Ⅰ 對數的運演算法則是什麼
對數的運算性質
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaM^n=nlogaM (n∈R).
以上格式均可逆用
Ⅱ 對數相乘怎麼算
兩對數相乘無法利用對數的運算性質求解,因此在解決此類問題時,要根據所給的關系式認真分析其結構特點,主要有三種處理方法:
1、利用換底公式;
2、整體考慮;
3、化各對數為和差的形式。
舉題說明:log2 25•log3 4•log5 9
解:原式=log2 5² × log3 2² ×log5 3²
=2log2 5 × 2log3 2 × 2log5 3
=8 【(lg5)/(lg2)】 × 【(lg2)/(lg3)】 × 【(lg3)/(lg5)】
=8
(2)對數的運演算法則擴展閱讀:
對數的運演算法則:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指數的運演算法則:
1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】
3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】
4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】
Ⅲ 對數運算有哪些運演算法則
對數運算有哪些運演算法則如下:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
Ⅳ 對數函數的運演算法則
由指數和對數的互相轉化關系可得出:
1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即,有一個對數函數和一個指數函數,它們互為反函數。
Ⅳ 對數函數的運演算法則及公
1.對數源於指數,是指數函數反函數
因為:y = ax
所以:x = logay
2. 對數的定義
【定義】如果 N=ax(a>0,a≠1),即a的x次方等於N(a>0,且a≠1),那麼數x叫做以a為底N的對數(logarithm),記作:
x=logaN
其中,a叫做對數的底數,N叫做真數,x叫做 「以a為底N的對數」。
2.1對數的表示及性質:
1.以a為底N的對數記作:logaN
2.以10為底的常用對數:lgN = log10N
3.以無理數e(e=2.71828...)為底的自然對數記作:lnN = logeN
4.零沒有對數.
5.在實數范圍內,負數無對數。 [3]在虛數范圍內,負數是有對數的。
-------------------------------------------------------------------------------------------------------------------------------------
註: 自然對數的底數 e :https://www.guokr.com/article/50264/
細胞分裂現象是不間斷、連續的,每分每秒產生的新細胞,都會立即和母體一樣繼續分裂,一個單位時間(24小時)最多可以得到多少個細胞呢?答案是:當增長率為100%保持不變時,在單位時間內細胞種群最多隻能擴大2.71828倍。 數學家把這個數就稱為e,它的含義是單位時間內,持續的翻倍增長所能達到的極限值。
-----------------------------------------------------------------------------------------------------------------------------------
3.對數函數
【3.1定義】
函數 叫做對數函數(logarithmic function),其中x是自變數。對數函數的定義域是 。
【3.2函數基本性質】
1、過定點 ,即x=1時,y=0。
2、當 時,在 上是減函數;
當 時,在 上是增函數。
4.對數運演算法則(rule of logarithmic operations)
對數運演算法則,是一種特殊的運算方法。指 積、商、冪、方根 的對數的運演算法則
由指數和對數的互相轉化關系可得出:
1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即:
2.兩個正數商的對數,等於同一底數的被除數的對數減去除數對數的差,即:
3一個正數冪的對數,等於冪的底數的對數乘以冪的指數,即:
4.若式中冪指數則有以下的正數的算術根的對數運演算法則:一個正數的算術根的對數,等於被開方數的對數除以根指數,即:
5.推導
5.對數公式
5.1基本知識
① ;
② ;
③負數與零無對數.
④ * =1;
⑤ ;
5.2恆等式及證明
a^log(a)(N)=N (a>0 ,a≠1)
對數公式運算的理解與推導by尋韻天下(8張)
推導:log(a) (a^N)=N恆等式證明
在a>0且a≠1,N>0時
設:當log(a)(N)=t,滿足(t∈R)
則有a^t=N;
a^(log(a)(N))=a^t=N;
證明完畢
==================================================================
Ⅵ 對數的運演算法則及公式
摘要 1.用字母表示運演算法則、運算定律以及計算公式.演算法的一般化,深化和發展了對數的認識.2.用字母表示現實世界和各門學科中的各種數量關系.例如,勻速運動中的速度v、時間t和路程s的關系是s=vt.3.用字母表示數,便於從具體情境中抽象出數量關系和變化規律,並確切地表示出來,從而有利於進一步用數學知識去解決問題.
Ⅶ 對數函數的運算公式.
對數的運算性質
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N;
log(a)a^b=b 證明:設a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M ,
log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
Ⅷ 對數公式的運演算法則
對數公式的運演算法則,如下圖所示:
(8)對數的運演算法則擴展閱讀:
1、對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
2、對數運算,實際上也就是指數在運算。