導航:首頁 > 源碼編譯 > pid演算法

pid演算法

發布時間:2022-01-24 11:36:24

A. 什麼是pid演算法

比例積分微分咯

B. 什麼是PID演算法要詳細一點的

P proportion 比例 I integration 積分 D differentiation 微分 PID用於控制精度 比例是必須的,它直接影響精度,影響控制的結果 積分 它相當於力學的慣性 能使震盪趨於平緩 微分 控制提前量 它相當於力學的加速度 影響控制的反應速度.太大會導致大的超調量 使系統極不穩定.太小會使反應緩慢. 一般而言 PID調節是一個整體的說法 在實際中 PID的比例積分微分並非總是同時使用 PI調節和PD調節使用較多.
滿意請採納

C. PID的計算公式

PID的增量型公式:

PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】

PID演算法具體分兩種:一種是位置式的 ,一種是增量式的。

位置式PID的輸出與過去的所有狀態有關,計算時要對e(每一次的控制誤差)進行累加,這個計算量非常大,而明顯沒有必要。而且小車的PID控制器的輸出並不是絕對數值,而是一個△,代表增多少,減多少。換句話說,通過增量PID演算法,每次輸出是PWM要增加多少或者減小多少,而不是PWM的實際值。所以明白增量式PID就行了。


PID控制原理:

本系統通過擺桿(輥)反饋的位置信號實現同步控制。收線控制採用實時計算的實際卷徑值,通過卷徑的變化修正PID前饋量,可以使整個系統准確、穩定運行。

PID系統特點:

1、主驅動電機速度可以通過電位器來控制,把S350設置為SVC開環矢量控制,將模擬輸出端子FM設定為運行頻率,從而給定收卷用變頻器的主速度。

2、收卷用S350變頻器的主速度來自放卷(主驅動)的模擬輸出埠。擺桿電位器模擬量

信號通過CI通道作為PID的反饋量。S350的頻率源採用主頻率Ⅵ和輔助頻率源PID疊加的方式。通過調整運行過程PID參數,可以獲得穩定的收放卷效果。

3、本系統啟用邏輯控制和卷徑計算功能,能使系統在任意卷徑下平穩啟動,同時兩組PID參數可確保生產全程擺桿控制效果穩定。

D. PID演算法的簡介

控制點包含三種比較簡單的PID控制演算法,分別是:增量式演算法,位置式演算法,微分先行。 這三種PID演算法雖然簡單,但各有特點,基本上能滿足一般控制的大多數要求。

E. PID演算法的介紹

在過程式控制制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是應用最為廣泛的一種自動控制器。它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於過程式控制制的典型對象──「一階滯後+純滯後」與「二階滯後+純滯後」的控制對象,PID控制器是一種最優控制。PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PI、PD、…)。

F. 什麼是「PID演算法」

「PID演算法」在過程式控制制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是應用最為廣泛的一種自動控制器。

它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於過程式控制制的典型對象──「一階滯後+純滯後」與「二階滯後+純滯後」的控制對象,PID控制器是一種最優控制。

PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PI、PD、…)。

控制點包含三種比較簡單的PID控制演算法,分別是:增量式演算法,位置式演算法,微分先行。 這三種PID演算法雖然簡單,但各有特點,基本上能滿足一般控制的大多數要求。

PID增量式演算法

離散化公式:

△u(k)= u(k)- u(k-1)

△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]

進一步可以改寫成

△u(k)=Ae(k)-Be(k-1)+Ce(k-2)。

G. PID演算法的演算法種類

離散化公式:
△u(k)= u(k)- u(k-1)
△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]
進一步可以改寫成
△u(k)=Ae(k)-Be(k-1)+Ce(k-2)
對於增量式演算法,可以選擇的功能有:
(1) 濾波的選擇
可以對輸入加一個前置濾波器,使得進入控制演算法的給定值不突變,而是有一定慣性延遲的緩變數。
(2) 系統的動態過程加速
在增量式演算法中,比例項與積分項的符號有以下關系:如果被控量繼續偏離給定值,則這兩項符號相同,而當被控量向給定值方向變化時,則這兩項的符號相反。
由於這一性質,當被控量接近給定值的時候,反號的比例作用阻礙了積分作用,因而避免了積分超調以及隨之帶來的振盪,這顯然是有利於控制的。但如果被控量遠未接近給定值,僅剛開始向給定值變化時,由於比例和積分反向,將會減慢控制過程。
為了加快開始的動態過程,我們可以設定一個偏差范圍v,當偏差|e(t)|< β時,即被控量接近給定值時,就按正常規律調節,而當|e(t)|>= β時,則不管比例作用為正或為負,都使它向有利於接近給定值的方向調整,即取其值為|e(t)-e(t-1)|,其符號與積分項一致。利用這樣的演算法,可以加快控制的動態過程。
(3) PID增量演算法的飽和作用及其抑制
在PID增量演算法中,由於執行元件本身是機械或物理的積分儲存單元,如果給定值發生突變時,由演算法的比例部分和微分部分計算出的控制增量可能比較大,如果該值超過了執行元件所允許的最大限度,那麼實際上執行的控制增量將時受到限制時的值,多餘的部分將丟失,將使系統的動態過程變長,因此,需要採取一定的措施改善這種情況。
糾正這種缺陷的方法是採用積累補償法,當超出執行機構的執行能力時,將其多餘部分積累起來,而一旦可能時,再補充執行。 離散公式:
u(k)=Kp*e(k) +Ki*+Kd*[e(k)-e(k-1)]
對於位置式演算法,可以選擇的功能有:
a、濾波:同上為一階慣性濾波
b、飽和作用抑制: 在基本PID控制中,當有較大幅度的擾動或大幅度改變給定值時, 由於此時有較大的偏差,以及系統有慣性和滯後,故在積分項的作用下,往往會產生較大的超調量和長時間的波動。特別是對於溫度、成份等變化緩慢的過程,這一現象將更嚴重。為此可以採用積分分離措施,即偏差較大時,取消積分作用;當偏差較小時才將積分作用投入。
另外積分分離的閾值應視具體對象和要求而定。若閾值太大,達不到積分分離的目的,若太小又有可能因被控量無法跳出積分分離區,只進行PD控制,將會出現殘差。
離散化公式:

當時當|e(t)|>β時
q0 = Kp(1+Td/T)
q1 = -Kp(1+2Td/T)
q2 = Kp Td /T
u(t) = u(t-1) + Δu(t)
註:各符號含義如下
u(t);;;;; 控制器的輸出值。
e(t);;;;; 控制器輸入與設定值之間的誤差。
Kp;;;;;;; 比例系數。
Ti;;;;;;; 積分時間常數。
Td;;;;;;; 微分時間常數。(有的地方用Kd表示)
T;;;;;;;; 調節周期。
β;;;;;;; 積分分離閾值 當根據PID位置演算法算出的控制量超出限制范圍時,控制量實際上只能取邊際值U=Umax,或U=Umin,有效偏差法是將相應的這一控制量的偏差值作為有效偏差值計入積分累計而不是將實際的偏差計入積分累計。因為按實際偏差計算出的控制量並沒有執行。
如果實際實現的控制量為U=U(上限值或下限值),則有效偏差可以逆推出,即:
=
然後,由該值計算積分項
微分先行PID演算法
當控制系統的給定值發生階躍時,微分作用將導致輸出值大幅度變化,這樣不利於生產的穩定操作。因此在微分項中不考慮給定值,只對被控量(控制器輸入值)進行微分。微分先行PID演算法又叫測量值微分PID演算法。公式如下:
離散化公式:
參數說明同上
對於純滯後對象的補償
控制點採用了Smith預測器,使控制對象與補償環節一起構成一個簡單的慣性環節。
PID參數整定
(1) 比例系數Kp對系統性能的影響

比例系數加大,使系統的動作靈敏,速度加快,穩態誤差減小。Kp偏大,振盪次數加多,調節時間加長。Kp太大時,系統會趨於不穩定。Kp太小,又會使系統的動作緩慢。Kp可以選負數,這主要是由執行機構、感測器以控制對象的特性決定的。如果Kc的符號選擇不當對象狀態(pv值)就會離控制目標的狀態(sv值)越來越遠,如果出現這樣的情況Kp的符號就一定要取反。
(2) 積分控制Ti對系統性能的影響

積分作用使系統的穩定性下降,Ti小(積分作用強)會使系統不穩定,但能消除穩態誤差,提高系統的控制精度。
(3) 微分控制Td對系統性能的影響

微分作用可以改善動態特性,Td偏大時,超調量較大,調節時間較短。Td偏小時,超調量也較大,調節時間也較長。只有Td合適,才能使超調量較小,減短調節時間。

H. PID演算法怎麼用

U不能代替V,它們有關聯但不是同一個東東。

一般在自動控制中,控制模塊(PID等)輸出的是控制值,但不是輸出值。它們的關系在於PID控制模塊輸出到PID輸出的部分——這個部分,你初入門把它當成「另一個系統X或另一個單獨的設備X」即可。系統X是接受U輸入,再產生V輸入。
拿個實際的例子來說,有個PID要控制水箱水位,上面有入水的水龍頭,下方是出水口流出。這個水位就是V輸入,通過某個測量器(水位計什麼的)輸入到PID。然後PID輸出U,這里請注意!它的輸出U接到水龍頭,而水龍頭給出的控制方式,是以它的水量影響水箱水位,最後繞回來,水位被測出以V輸入到PID。
所以在這個系統中,除PID外,「水龍頭-出水-水箱水位」可以視為一套單獨的系統,PID以輸出影響水龍頭(水龍頭排出的水量),再注意一下,水龍頭對水箱水位的控制是不可預知的,因為不是小學數學題,沒有恆定值。水龍頭開了100%能產生的流量,可能是200,可能是180,也可能是170,更進一步在水箱中,因為排出量可能變化的影響,即例水龍頭恆定了流量,水位也會波動,因此PID外部的「水龍頭-出水-水箱水位」系統,可能會有不可預知的波動,但「大方向」是可預料的,比如這個系統,PID的U影響水龍頭,間接對水位的大小是一個正向變化,U越大,水位V(輸出值)在正常情況下加一個向上增值的影響。
考慮有個同學,他按「人工思考」的方式控制水箱水位,他的能力是可以操作水龍頭,能看到水箱水位,相當於上面的U和V,現在BOSS要求他說,必須把水箱水位控制在40%這個位置(給定值),有誤差可以,盡量控制。當他看到水位低於40%時,會把水龍頭開大,然後根據水位的變化再調水龍頭出水的大小,好吧他發現開了水龍頭,水位從30%緩慢上升,他一想可能是下面出水太多,就會把水龍頭擰大一點(D演算法,偏差變化越大,正反向開得越大,I演算法,經過一定時間累積值越大,調節U的力度越大),反之亦然,水位從30%向給定的40%上升的速度太快,他會想,快到40%前把水龍頭擰小點,讓出水和進水差不多。

說回你那個電機,它接受U,相當於「水龍頭」,後面電機的輸出不可能立即當成V送回PID,而是控制某個設備作正向或反向的增加量,比如這電機連接到一個送料器,控制容器送出給料,那就是個反向增量,PID系統測量出料的多少為V,同樣的,由於現實系統的一些不確定性,經常會有另一個擾動加在送料系統上。PID的目的就是找出控制參數,盡量找到一個平衡點,令U對V的間接輸出趨近PID的給定值

閱讀全文

與pid演算法相關的資料

熱點內容
手機時間如何校正到伺服器 瀏覽:81
創造與魔法瞬移源碼百度 瀏覽:882
反射優化java 瀏覽:874
硬體加密播放盒子 瀏覽:923
xp點擊文件夾選項沒反應 瀏覽:537
蘋果不顯示桌面的app怎麼刪除 瀏覽:864
安卓手機怎麼換國際服 瀏覽:415
神獸領域安卓怎麼下載 瀏覽:250
單片機交通燈ad原理圖 瀏覽:413
多功能解壓磁鐵筆 瀏覽:80
少兒編程火箭升空 瀏覽:401
蘭斯10游戲解壓碼 瀏覽:42
手機proxy伺服器地址 瀏覽:449
吉他清音壓縮 瀏覽:301
簡歷模板程序員 瀏覽:882
螺桿壓縮機虛標型號 瀏覽:953
idea開發項目伺服器ip地址 瀏覽:125
串口伺服器出現亂碼怎麼解決 瀏覽:950
命令按鈕的default 瀏覽:161
戰網如何登錄其他伺服器 瀏覽:990