你好,我以前從csdn上下過一個源代碼,不過沒試過怎麼用,給你參考一下:
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
/**
* 編寫者: 賴志環
* 標准遺傳演算法求解函數
* 編寫日期: 2007-12-2
*/
class Best {
public int generations; //最佳適應值代號
public String str; //最佳染色體
public double fitness; //最佳適應值
}
public class SGAFrame extends JFrame {
private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色體
private String[] ipop = new String[10]; //染色體
private int gernation = 0; //染色體代號
public static final int GENE = 22; //基因數
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* Create the frame
*/
public SGAFrame() {
super();
this.ipop = inialPops();
getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLabel label = new JLabel();
label.setText("X的區間:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);
final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);
final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);
final JLabel label_2 = new JLabel();
label_2.setText("利用標准遺傳演算法求解函數f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);
final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);
final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);
textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}
/**
* 初始化一條染色體(用二進制字元串表示)
* @return 一條染色體
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}
/**
* 初始化一組染色體
* @return 染色體組
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}
/**
* 將染色體轉換成x的值
* @param str 染色體
* @return 染色體的適應值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);
return fitness;
}
/**
* 計算群體上每個個體的適應度值;
* 按由個體適應度值所決定的某個規則選擇將進入下一代的個體;
*/
private void select() {
double evals[] = new double[10]; // 所有染色體適應值
double p[] = new double[10]; // 各染色體選擇概率
double q[] = new double[10]; // 累計概率
double F = 0; // 累計適應值總和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的記錄下來
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色體適應值總和
}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {
double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];
} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}
/**
* 交叉操作
* 交叉率為25%,平均為25%的染色體進行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}
/**
* 基因突變操作
* 1%基因變異m*pop_size 共180個基因,為了使每個基因都有相同機會發生變異,
* 需要產生[1--180]上均勻分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色體號
int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因號
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("變異前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "0" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("變異後" + ipop[chromosomeNum]);
}
}
/**
* 執行遺傳演算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "個染色體";
return str;
}
}
2. 懸賞100 java 遺傳演算法
加QQ 1336208558. 我發給你!
3. 求用java實現多目標遺傳演算法的代碼
給分吧,我給你發一段。
4. 使用java來實現在智能組卷中的遺傳演算法(急急急)
題目好像是讓你做個增強版的List ,簡單的都實現了 程序架子大概是這樣,排序查找什麼的網路搜下 演算法很多,套著每樣寫個方法就行了,測試就在main『方法里寫
publicclassMyList{
privateString[]arr;
privateintcount;
publicMyList(intcount){
arr=newString[count];
this.count=count;
}
publicMyList(int[]intArr){
arr=newString[intArr.length];
this.count=intArr.length;
for(inti=0;i<intArr.length;i++){
arr[i]=intArr[i]+"";
}
}
publicMyList(String[]stringArr){
arr=stringArr;
this.count=stringArr.length;
}
publicintgetLength(){
returncount;
}
//清空容器內的數組。
publicvoidclearAll(){
arr=newString[count];
}
//通過給定元素下標來刪除某一元素
publicvoidremoveBySeqn(intseqn){
if(seqn>=0&&seqn<count){
arr[seqn]=null;
}
}
publicstaticvoidmain(String[]args){
MyListlist=newMyList(40);
MyListlist1=newMyList({3,2,125,56,123});
MyListlist2=newMyList({"123",""ad});
list2.removeBySeqn(0);
list1.clearAll();
}
}
5. java中有沒有專門為遺傳演算法等智能演算法設計的包呢
JGAP(Java Genetic Algorithms Package -- Java遺傳演算法包)
6. 求基於遺傳演算法的多目標優化代碼 用C,C++或java實現。最好能夠運行
好高深
7. 如何用Java實現遺傳演算法
通過遺傳演算法走迷宮。雖然圖1和圖2均成功走出迷宮,但是圖1比圖2的路徑長的多,且復雜,遺傳演算法可以計算出有多少種可能性,並選擇其中最簡潔的作為運算結果。
示例圖1:
實現代碼:
importjava.util.ArrayList;
importjava.util.Collections;
importjava.util.Iterator;
importjava.util.LinkedList;
importjava.util.List;
importjava.util.Random;
/**
* 用遺傳演算法走迷宮
*
* @author Orisun
*
*/
publicclassGA {
intgene_len;// 基因長度
intchrom_len;// 染色體長度
intpopulation;// 種群大小
doublecross_ratio;// 交叉率
doublemuta_ratio;// 變異率
intiter_limit;// 最多進化的代數
List<boolean[]> indivials;// 存儲當代種群的染色體
Labyrinth labyrinth;
intwidth;//迷宮一行有多少個格子
intheight;//迷宮有多少行
publicclassBI {
doublefitness;
boolean[] indv;
publicBI(doublef,boolean[] ind) {
fitness = f;
indv = ind;
}
publicdoublegetFitness() {
returnfitness;
}
publicboolean[] getIndv() {
returnindv;
}
}
List<BI> best_indivial;// 存儲每一代中最優秀的個體
publicGA(Labyrinth labyrinth) {
this.labyrinth=labyrinth;
this.width = labyrinth.map[0].length;
this.height = labyrinth.map.length;
chrom_len =4* (width+height);
gene_len =2;
population =20;
cross_ratio =0.83;
muta_ratio =0.002;
iter_limit =300;
indivials =newArrayList<boolean[]>(population);
best_indivial =newArrayList<BI>(iter_limit);
}
publicintgetWidth() {
returnwidth;
}
publicvoidsetWidth(intwidth) {
this.width = width;
}
publicdoublegetCross_ratio() {
returncross_ratio;
}
publicList<BI> getBest_indivial() {
returnbest_indivial;
}
publicLabyrinth getLabyrinth() {
returnlabyrinth;
}
publicvoidsetLabyrinth(Labyrinth labyrinth) {
this.labyrinth = labyrinth;
}
publicvoidsetChrom_len(intchrom_len) {
this.chrom_len = chrom_len;
}
publicvoidsetPopulation(intpopulation) {
this.population = population;
}
publicvoidsetCross_ratio(doublecross_ratio) {
this.cross_ratio = cross_ratio;
}
publicvoidsetMuta_ratio(doublemuta_ratio) {
this.muta_ratio = muta_ratio;
}
publicvoidsetIter_limit(intiter_limit) {
this.iter_limit = iter_limit;
}
// 初始化種群
publicvoidinitPopulation() {
Random r =newRandom(System.currentTimeMillis());
for(inti =0; i < population; i++) {
intlen = gene_len * chrom_len;
boolean[] ind =newboolean[len];
for(intj =0; j < len; j++)
ind[j] = r.nextBoolean();
indivials.add(ind);
}
}
// 交叉
publicvoidcross(boolean[] arr1,boolean[] arr2) {
Random r =newRandom(System.currentTimeMillis());
intlength = arr1.length;
intslice =0;
do{
slice = r.nextInt(length);
}while(slice ==0);
if(slice < length /2) {
for(inti =0; i < slice; i++) {
booleantmp = arr1[i];
arr1[i] = arr2[i];
arr2[i] = tmp;
}
}else{
for(inti = slice; i < length; i++) {
booleantmp = arr1[i];
arr1[i] = arr2[i];
arr2[i] = tmp;
}
}
}
// 變異
publicvoidmutation(boolean[] indivial) {
intlength = indivial.length;
Random r =newRandom(System.currentTimeMillis());
indivial[r.nextInt(length)] ^=false;
}
// 輪盤法選擇下一代,並返回當代最高的適應度值
publicdoubleselection() {
boolean[][] next_generation =newboolean[population][];// 下一代
intlength = gene_len * chrom_len;
for(inti =0; i < population; i++)
next_generation[i] =newboolean[length];
double[] cumulation =newdouble[population];
intbest_index =0;
doublemax_fitness = getFitness(indivials.get(best_index));
cumulation[0] = max_fitness;
for(inti =1; i < population; i++) {
doublefit = getFitness(indivials.get(i));
cumulation[i] = cumulation[i -1] + fit;
// 尋找當代的最優個體
if(fit > max_fitness) {
best_index = i;
max_fitness = fit;
}
}
Random rand =newRandom(System.currentTimeMillis());
for(inti =0; i < population; i++)
next_generation[i] = indivials.get(findByHalf(cumulation,
rand.nextDouble() * cumulation[population -1]));
// 把當代的最優個體及其適應度放到best_indivial中
BI bi =newBI(max_fitness, indivials.get(best_index));
// printPath(indivials.get(best_index));
//System.out.println(max_fitness);
best_indivial.add(bi);
// 新一代作為當前代
for(inti =0; i < population; i++)
indivials.set(i, next_generation[i]);
returnmax_fitness;
}
// 折半查找
publicintfindByHalf(double[] arr,doublefind) {
if(find <0|| find ==0|| find > arr[arr.length -1])
return-1;
intmin =0;
intmax = arr.length -1;
intmedium = min;
do{
if(medium == (min + max) /2)
break;
medium = (min + max) /2;
if(arr[medium] < find)
min = medium;
elseif(arr[medium] > find)
max = medium;
else
returnmedium;
}while(min < max);
returnmax;
}
// 計算適應度
publicdoublegetFitness(boolean[] indivial) {
intlength = indivial.length;
// 記錄當前的位置,入口點是(1,0)
intx =1;
inty =0;
// 根據染色體中基因的指導向前走
for(inti =0; i < length; i++) {
booleanb1 = indivial[i];
booleanb2 = indivial[++i];
// 00向左走
if(b1 ==false&& b2 ==false) {
if(x >0&& labyrinth.map[y][x -1] ==true) {
x--;
}
}
// 01向右走
elseif(b1 ==false&& b2 ==true) {
if(x +1< width && labyrinth.map[y][x +1] ==true) {
x++;
}
}
// 10向上走
elseif(b1 ==true&& b2 ==false) {
if(y >0&& labyrinth.map[y -1][x] ==true) {
y--;
}
}
// 11向下走
elseif(b1 ==true&& b2 ==true) {
if(y +1< height && labyrinth.map[y +1][x] ==true) {
y++;
}
}
}
intn = Math.abs(x - labyrinth.x_end) + Math.abs(y -labyrinth.y_end) +1;
// if(n==1)
// printPath(indivial);
return1.0/ n;
}
// 運行遺傳演算法
publicbooleanrun() {
// 初始化種群
initPopulation();
Random rand =newRandom(System.currentTimeMillis());
booleansuccess =false;
while(iter_limit-- >0) {
// 打亂種群的順序
Collections.shuffle(indivials);
for(inti =0; i < population -1; i +=2) {
// 交叉
if(rand.nextDouble() < cross_ratio) {
cross(indivials.get(i), indivials.get(i +1));
}
// 變異
if(rand.nextDouble() < muta_ratio) {
mutation(indivials.get(i));
}
}
// 種群更替
if(selection() ==1) {
success =true;
break;
}
}
returnsuccess;
}
// public static void main(String[] args) {
// GA ga = new GA(8, 8);
// if (!ga.run()) {
// System.out.println("沒有找到走出迷宮的路徑.");
// } else {
// int gen = ga.best_indivial.size();
// boolean[] indivial = ga.best_indivial.get(gen - 1).indv;
// System.out.println(ga.getPath(indivial));
// }
// }
// 根據染色體列印走法
publicString getPath(boolean[] indivial) {
intlength = indivial.length;
intx =1;
inty =0;
LinkedList<String> stack=newLinkedList<String>();
for(inti =0; i < length; i++) {
booleanb1 = indivial[i];
booleanb2 = indivial[++i];
if(b1 ==false&& b2 ==false) {
if(x >0&& labyrinth.map[y][x -1] ==true) {
x--;
if(!stack.isEmpty() && stack.peek()=="右")
stack.poll();
else
stack.push("左");
}
}elseif(b1 ==false&& b2 ==true) {
if(x +1< width && labyrinth.map[y][x +1] ==true) {
x++;
if(!stack.isEmpty() && stack.peek()=="左")
stack.poll();
else
stack.push("右");
}
}elseif(b1 ==true&& b2 ==false) {
if(y >0&& labyrinth.map[y -1][x] ==true) {
y--;
if(!stack.isEmpty() && stack.peek()=="下")
stack.poll();
else
stack.push("上");
}
}elseif(b1 ==true&& b2 ==true) {
if(y +1< height && labyrinth.map[y +1][x] ==true) {
y++;
if(!stack.isEmpty() && stack.peek()=="上")
stack.poll();
else
stack.push("下");
}
}
}
StringBuilder sb=newStringBuilder(length/4);
Iterator<String> iter=stack.descendingIterator();
while(iter.hasNext())
sb.append(iter.next());
returnsb.toString();
}
}
8. 急求 遺傳演算法 java程序
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
/**
* 編寫者: 賴志環
* 標准遺傳演算法求解函數
* 編寫日期: 2007-12-2
*/
class Best {
public int generations; //最佳適應值代號
public String str; //最佳染色體
public double fitness; //最佳適應值
}
public class SGAFrame extends JFrame {
private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色體
private String[] ipop = new String[10]; //染色體
private int gernation = 0; //染色體代號
public static final int GENE = 22; //基因數
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* Create the frame
*/
public SGAFrame() {
super();
this.ipop = inialPops();
getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLabel label = new JLabel();
label.setText("X的區間:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);
final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);
final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);
final JLabel label_2 = new JLabel();
label_2.setText("利用標准遺傳演算法求解函數f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);
final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);
final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);
textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}
/**
* 初始化一條染色體(用二進制字元串表示)
* @return 一條染色體
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}
/**
* 初始化一組染色體
* @return 染色體組
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}
/**
* 將染色體轉換成x的值
* @param str 染色體
* @return 染色體的適應值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);
return fitness;
}
/**
* 計算群體上每個個體的適應度值;
* 按由個體適應度值所決定的某個規則選擇將進入下一代的個體;
*/
private void select() {
double evals[] = new double[10]; // 所有染色體適應值
double p[] = new double[10]; // 各染色體選擇概率
double q[] = new double[10]; // 累計概率
double F = 0; // 累計適應值總和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的記錄下來
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色體適應值總和
}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {
double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];
} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}
/**
* 交叉操作
* 交叉率為25%,平均為25%的染色體進行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}
/**
* 基因突變操作
* 1%基因變異m*pop_size 共180個基因,為了使每個基因都有相同機會發生變異,
* 需要產生[1--180]上均勻分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色體號
int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因號
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("變異前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "0" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("變異後" + ipop[chromosomeNum]);
}
}
/**
* 執行遺傳演算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "個染色體";
return str;
}
}
9. java寫的遺傳演算法
package baseclass;
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
/**
* 編寫者: 賴志環
* 標准遺傳演算法求解函數
* 編寫日期: 2007-12-2
*/
class Best {
public int generations; //最佳適應值代號
public String str; //最佳染色體
public double fitness; //最佳適應值
}
public class SGAFrame extends JFrame {
private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色體
private String[] ipop = new String[10]; //染色體
private int gernation = 0; //染色體代號
public static final int GENE = 22; //基因數
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* Create the frame
*/
public SGAFrame() {
super();
this.ipop = inialPops();
getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLabel label = new JLabel();
label.setText("X的區間:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);
final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);
final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);
final JLabel label_2 = new JLabel();
label_2.setText("利用標准遺傳演算法求解函數f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);
final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);
final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);
textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}
/**
* 初始化一條染色體(用二進制字元串表示)
* @return 一條染色體
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}
/**
* 初始化一組染色體
* @return 染色體組
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}
/**
* 將染色體轉換成x的值
* @param str 染色體
* @return 染色體的適應值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);
return fitness;
}
/**
* 計算群體上每個個體的適應度值;
* 按由個體適應度值所決定的某個規則選擇將進入下一代的個體;
*/
private void select() {
double evals[] = new double[10]; // 所有染色體適應值
double p[] = new double[10]; // 各染色體選擇概率
double q[] = new double[10]; // 累計概率
double F = 0; // 累計適應值總和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的記錄下來
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色體適應值總和
}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {
double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];
} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}
/**
* 交叉操作
* 交叉率為25%,平均為25%的染色體進行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}
/**
* 基因突變操作
* 1%基因變異m*pop_size 共180個基因,為了使每個基因都有相同機會發生變異,
* 需要產生[1--180]上均勻分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色體號
int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因號
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("變異前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "0" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("變異後" + ipop[chromosomeNum]);
}
}
/**
* 執行遺傳演算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "個染色體"+best.str;
return str;
}
}