『壹』 概率的公式是怎麼計算的
1、C 3 10 = (10*9*8)/(1*2*3)
A 3 10=10*9*8
2、A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每個數連乘。
C(n,m)=A(n,m)/A(m,m)。一般地,從n個不同的元素中,任取m(m≤n)個元素為一組,叫作從n個不同元素中取出m個元素的一個組合。
(1)概率的演算法擴展閱讀:
概率的加法法則
定理:設A、B是互不相容事件(AB=φ),則:
P(A∪B)=P(A)+P(B)
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1
推論3:為事件A的對立事件。
推論4:若B包含A,則P(B-A)= P(B)-P(A)
推論5(廣義加法公式):對任意兩個事件A與B,有P(A∪B)=P(A)+P(B)-P(AB)[1]
條件概率
條件概率:已知事件B出現的條件下A出現的概率,稱為條件概率,記作:P(A|B)
條件概率計算公式:
當P(A)>0,P(B|A)=P(AB)/P(A)
當P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推廣:P(ABC)=P(A)P(B|A)P(C|AB)[1]
『貳』 概率的計算公式
12粒圍棋子從中任取3粒的總數是C(12,3)
取到3粒的都是白子的情況是C(8,3)
C(8,3)
P=——————=14/55
C(12,3)
排列:從n個不同的元素中取m(m≤n)個元素,按照一定的順序排成一排,叫做從n個不同的元素中取m個元素的排列。
排列數:從n個不同的元素中取m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Anm
排列公式:A(n,m)=n*(n-1)*.....(n-m+1)
組合:從n個不同的元素中,任取m(m≤n)個元素並成一組,叫做從n個不同的元素中取m個元素的組合。
組合數:從n個不同的元素中取m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,記為Cnm。
組合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!)
拓展資料:
概率的計算,是根據實際的條件來決定的,沒有一個統一的萬能公式。解決概率問題的關鍵,在於對具體問題的分析。然後,再考慮使用適宜的公式。
有一個公式是常用到的:P(A)=m/n。「(A)」表示事件。「m」表示事件(A)發生的總數。「n」是總事件發生的總數。
『叄』 概率怎麼計算
這是批排列組合的題目
如果是5選4,再組成數字:
5×4×3×2=120種。
如果是m個,選n個,進行全排列(就是不重復),規律是:
m!/(m-n)!
感嘆號是階乘符號,m!=m×(m-1)×(m-2)×……×3×2×1
『肆』 概率的計算
答案應該是1/3.
理由:王成可能分到三組中的任一組,則有C(3,1)=3種可能;同時李全也可能分到三組中的任一組,即有C(3,1)=3種可能。於是,兩人的分組組合共有3*3=9種可能。當兩人在同一組時,只能在三組當中的其中一組,故此時有3種可能。則兩人在同一組的概率為3/9=1/3。
『伍』 概率是怎麼計算的
P(A)=A所含樣本點數/總體所含樣本點數。實用中經常採用「排列組合」的方法計算·
定理:設A、B是互不相容事件(AB=φ),則:
P(A∪B)=P(A)+P(B)
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1
(5)概率的演算法擴展閱讀
條件概率
條件概率:已知事件B出現的條件下A出現的概率,稱為條件概率,記作:P(A|B)
條件概率計算公式:
當P(A)>0,P(B|A)=P(AB)/P(A)
當P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推廣:P(ABC)=P(A)P(B|A)P(C|AB)
參考資料來源:網路-概率計算
『陸』 概率如何計算
定義事件和結果。概率是在一系列可能結果中一個或多個事件發生的可能性。因此,假設我們希望計算出把一個六面骰子擲出三的可能性。"擲出三"是一個事件,而我們知道六面骰子可以被擲出六個數字中的任何一個,因此其結果數為六。以下為另外兩個例子能加深你的理解:
例1:隨機選擇一個星期中的一天,選出的一天是周末的可能性有多大?
"選出周末中的一天"是我們的事件,而結果數就是一個星期中的天數,即七。
例2:一個罐子中裝有4個藍色小石、5個紅色小石和11個白色小石。如果隨機從罐子中取出一塊小石,這塊小石是紅色的可能性有多大?
"選出紅色小石"是我們的事件,結果數是罐子中小石的總數,即20。
2
用事件數除以可能結果數。所得結果即為單一事件發生的概率。在擲骰子中擲出三的例子中,事件數為一(每一骰子中只有一個三),而結果數為六。則其概率為1 ÷ 6、1/6、.166或16.6%。以下為計算其他例子中的概率的方法:
例1:隨機選擇一個星期中的一天,選出的一天是周末的可能性有多大?
事件數為二(因為一個星期中有兩天為周末),而結果數為七。則其概率為2 ÷ 7 = 2/7即.285或28.5%。
例2:一個罐子中裝有4個藍色小石、5個紅色小石和11個白色小石。如果隨機從罐子中取出一塊小石,這塊小石是紅色的可能性有多大?
事件數為五(因為共有五塊小石),而結果數為20。則其概率為5 ÷ 20 = 1/4即.25或25%。
『柒』 求概率計算公式
古典概型:
(1)算出所有基本事件的個數n;
(2)求出事件A包含的所有基本事件數m;
(3)代入公式P(A)=m/n,求出P(A)。
幾何概型:
設在空間上有一區域G,又區域g包含在區域G內(如圖),而區域G與g都是可以度量的(可求面積),現隨機地向G內投擲一點M,假設點M必落在G中,且點M落在區域G的任何部分區域g內的概率只與g的度量(長度、面積、體積等)成正比,而與g的位置和形狀無關.具有這種性質的隨機試驗(
擲點),稱為幾何概型。關於幾何概型的隨機事件「 向區域G中任意投擲一個點M,點M落在G內的部分區域g」的概率P定義為:g的度量與G的度量之比,即
P=g的測度/G的測度
幾何概型求事件A的概率公式:
一般地,在幾何區域D中隨機地取一點,記事件「該點落在其內部一個區域d內」為事件A,則事件A發生的概率為:
P(A)=構成事件A的區域長度(面積或體積)/ 實驗的全部結果所構成的區域長度(面積或體積)
這里要指出:D的測度不能為0,其中「測度」的意義依D確定.當D分別為線段,平面圖形,立體圖形時,相應的「測度」分別為長度,面積,體積等.
『捌』 關於概率如何計算
這個就見仁見智了。
每次投一注投100期:一次都不中的概率為:(999/1000)的100次方。
中100次的概率為:(1/1000)的100次方.
中99次的概率為:(1/1000)的99次方*(999/1000)
·······
中一次的概率為:(999/1000)的99次方*(1/1000)。
在某一期一次投100註:假定你這100注都是不同的號碼,中一注的概率為:1/10.
好像中獎率挺高的。但是根據莊家賺錢的原則,賠率肯定低於1:1000,所以你這樣投注是肯定虧錢的。
既然是賭運氣,還不如每次投一注,可以博幾次中獎的幾率。然後每次投注金額都較小,還可以多享受開注時的刺激。
小賭怡情!
『玖』 怎麼計算概率
概率是對事件發生可能性大小的度量。不會發生的概率為0,一定會發生的概率是100%,也可以說是1.例如拋硬幣,正面和反面出現的可能性都是50%,篩子每面出現的可能性都是六分之一,這些概率值通過直覺和經驗就能想出來。雖然我們知道實驗幾次不一定是這個結果,但試驗次數很多時,出現的頻率就會接近概率值,無窮次時,頻率就會等於概率。
通過直觀和經驗就能知道概率的幾個基本命題,也可以說是公理,蘇聯的數學家柯爾莫哥洛夫總結了3條概率公理。
1. 事件發生的概率不小於0
2. 集合中的事件必有一件發生,則發生的概率之和等於1
3. 集合中事件互相不容,沒有交集,則發生至少一個的概率等於每個事件概率之和
這3個公理不需記憶,應用時也不需刻意用,用直覺和經驗靠算術思維就能想出概率計算方法。
通過這3個公理也可以推導出6個定理,也不需記憶,甚至不需要知道。
概率計算不像方程應用,簡單地分別考慮每個數值含義列出等式,然後變換方程就能求解。列概率算式無法這樣做,那些概率定理和概率公式以及寫法,如:貝葉斯公式 P(A|B)=P(B|A)*P(A)/P(B) ,對列出概率算式幫助不大,也無法降低分析和推理難度,也就是說概率知識的公理化意義不大。概率計算時,只需按算術思維,按直覺和經驗直接列出算式,然後進行四則運算即可。簡單的場合,可以直接列出一個算式就可以算出概率值,在稍微復雜的場合需要分別列出幾個算式,然後再去轉換,這些復雜場合的概率演算法常見的有頻次演算法,集合對應演算法,和反向演算法。