❶ kmeans聚類演算法是什麼
K-means演算法是最為經典的基於劃分的聚類方法,是十大經典數據挖掘演算法之一。K-means演算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果。
聚類屬於無監督學習,以往的回歸、樸素貝葉斯、SVM等都是有類別標簽y的,也就是說樣例中已經給出了樣例的分類。而聚類的樣本中卻沒有給定y,只有特徵x,比如假設宇宙中的星星可以表示成三維空間中的點集。
(1)k聚類演算法擴展閱讀:
k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
(1)適當選擇c個類的初始中心;
(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;
(3)利用均值等方法更新該類的中心值;
(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。
❷ K-Means聚類演算法原理是怎麼樣的
問題:
姓名 身高 體重 眼睛
A 180 X 1.2
A X 140 X
A 180 140 X
A 168 120 1.5
姓名一樣,用java演算法,判斷出是兩個人?
❸ k-means聚類演算法一定要指定聚類個數嗎
其實我猜你想問的是怎麼改進k-means演算法,可以擺脫手工指定k值。實質上通過算距離達到聚類的演算法是必須要手工指定一個值的,也就是說需要一個參照。
不需要制定聚類個數的聚類演算法,例如:DBSCAN
❹ k-means聚類演算法常用的終止條件有哪些
K-means 演算法屬於聚類分析方法中一種基本的且應用最廣泛的劃分演算法,它是一種已知聚類類別數的聚類演算法。指定類別數為K,對樣本集合進行聚類,聚類的結果由K 個聚類中心來表達,基於給定的聚類目標函數(或者說是聚類效果判別准則),演算法採用迭代更新的方法,每一次迭代過程都是向目標函數值減小的方向進行,最終的聚類結果使目標函數值取得極小值,達到較優的聚類效果。使用平均誤差准則函數E作為聚類結果好壞的衡量標准之一,保證了演算法運行結果的可靠性和有效性。
❺ K均值聚類
k均值聚類演算法是一種迭代求解的聚類分析演算法,其步驟是,預將數據分為K組,則隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。
聚類中心以及分配給它們的對象就代表一個聚類。每分配一個樣本,聚類的聚類中心會根據聚類中現有的對象被重新計算。
這個過程將不斷重復直到滿足某個終止條件。終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。
k均值聚類是最著名的劃分聚類演算法,由於簡潔和效率使得他成為所有聚類演算法中最廣泛使用的。給定一個數據點集合和需要的聚類數目k,k由用戶指定,k均值演算法根據某個距離函數反復把數據分入k個聚類中。
❻ k-means演算法是聚類演算法還是分類演算法
一,k-means聚類演算法原理
k-means
演算法接受參數
k
;然後將事先輸入的n個數據對象劃分為
k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小.聚類相似度是利用各聚類中對象的均值所獲得一個「中心對
象」(引力中心)來進行計算的.
k-means演算法是最為經典的基於劃分的聚類方法,是十大經典數據挖掘演算法之一.k-means演算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類.通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果.
假設要把樣本集分為c個類別,演算法描述如下:
(1)適當選擇c個類的初始中心;
(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;
(3)利用均值等方法更新該類的中心值;
(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代.
該演算法的最大優勢在於簡潔和快速.演算法的關鍵在於初始中心的選擇和距離公式.