『壹』 bp神經網路用啥演算法
自己找個例子算一下,推導一下,這個回答起來比較復雜
神經網路對模型的表達能力依賴於優化演算法,優化是一個不斷計算梯度並調整可學習參數的過程,Fluid中的優化演算法可參考優化器。
在網路的訓練過程中,梯度計算分為兩個步驟:前向計算與反向傳播。
前向計算會根據您搭建的網路結構,將輸入單元的狀態傳遞到輸出單元。
反向傳播藉助鏈式法則,計算兩個或兩個以上復合函數的導數,將輸出單元的梯度反向傳播回輸入單元,根據計算出的梯度,調整網路的可學習參數。
BP演算法
隱層的引入使網路具有很大的潛力。但正像Minskey和Papert當時所指出的.雖然對所有那些能用簡單(無隱層)網結解決的問題有非常簡單的學習規則,即簡單感知器的收斂程序(主要歸功於Widrow和HMf於1960年提出的Delta規剛),
BP演算法
但當時並沒有找到同樣有技的含隱層的同培的學習規則。對此問題的研究有三個基本的結果。一種是使用簡單無監督學習規則的競爭學習方法.但它缺乏外部信息.難以確定適台映射的隱層結構。第二條途徑是假設一十內部(隱層)的表示方法,這在一些先約條件下是台理的。另一種方法是利用統計手段設計一個學習過程使之能有技地實現適當的內部表示法,Hinton等人(1984年)提出的Bolzmann機是這種方法的典型例子.它要求網路在兩個不同的狀態下達到平衡,並且只局限於對稱網路。Barto和他的同事(1985年)提出了另一條利用統計手段的學習方法。但迄今為止最有教和最實用的方瑤是Rumelhart、Hinton和Williams(1986年)提出的一般Delta法則,即反向傳播(BP)演算法。Parter(1985年)也獨立地得出過相似的演算法,他稱之為學習邏輯。此外, Lecun(1985年)也研究出大致相似的學習法則。
『貳』 bp神經網路的演算法改進一共有多少種啊!麻煩舉例一下!
1、引入動量項
2、變尺度法
3、變步長法
具體怎麼做,網上都有相關資料,公式比較難打,只能寫到這個份
『叄』 BP神經網路演算法的介紹
BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
『肆』 (1)BP演算法的學習過程中有兩個過程是什麼(2)寫出BP神經網路的數學模型,並以20
bp(back propagation)網路是1986年由rumelhart和mccelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。bp網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。bp神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「a」、「b」兩個字母的識別為例進行說明,規定當「a」輸入網路時,應該輸出「1」,而當輸入為「b」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「a」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「a」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「a」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「a」、「b」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,構成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路可以用作分類、聚類、預測等。神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。
雖然bp網路得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。
首先,由於學習速率是固定的,因此網路的收斂速度慢,需要較長的訓練時間。對於一些復雜問題,bp演算法需要的訓練時間可能非常長,這主要是由於學習速率太小造成的,可採用變化的學習速率或自適應的學習速率加以改進。
其次,bp演算法可以使權值收斂到某個值,但並不保證其為誤差平面的全局最小值,這是因為採用梯度下降法可能產生一個局部最小值。對於這個問題,可以採用附加動量法來解決。
再次,網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網路往往存在很大的冗餘性,在一定程度上也增加了網路學習的負擔。
最後,網路的學習和記憶具有不穩定性。也就是說,如果增加了學習樣本,訓練好的網路就需要從頭開始訓練,對於以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。
『伍』 ANN人工神經網路和BP神經網路有什麼區別
BP神經網路是ANN人工神經中的一種,常用的神經網路有BP、RBF、SOM、Hopfield等等,其功能不經相同,可總體來說ANN的主要功能是模式識別和分類訓練。
『陸』 BP演算法、BP神經網路、遺傳演算法、神經網路這四者之間的關系
這四個都屬於人工智慧演算法的范疇。其中BP演算法、BP神經網路和神經網路
屬於神經網路這個大類。遺傳演算法為進化演算法這個大類。
神經網路模擬人類大腦神經計算過程,可以實現高度非線性的預測和計算,主要用於非線性擬合,識別,特點是需要「訓練」,給一些輸入,告訴他正確的輸出。若干次後,再給新的輸入,神經網路就能正確的預測對於的輸出。神經網路廣泛的運用在模式識別,故障診斷中。BP演算法和BP神經網路是神經網路的改進版,修正了一些神經網路的缺點。
遺傳演算法屬於進化演算法,模擬大自然生物進化的過程:優勝略汰。個體不斷進化,只有高質量的個體(目標函數最小(大))才能進入下一代的繁殖。如此往復,最終找到全局最優值。遺傳演算法能夠很好的解決常規優化演算法無法解決的高度非線性優化問題,廣泛應用在各行各業中。差分進化,蟻群演算法,粒子群演算法等都屬於進化演算法,只是模擬的生物群體對象不一樣而已。
『柒』 BP神經網路模型各個參數的選取問題
樣本變數不需要那麼多,因為神經網路的信息存儲能力有限,過多的樣本會造成一些有用的信息被丟棄。如果樣本數量過多,應增加隱層節點數或隱層數目,才能增強學習能力。
一、隱層數
一般認為,增加隱層數可以降低網路誤差(也有文獻認為不一定能有效降低),提高精度,但也使網路復雜化,從而增加了網路的訓練時間和出現「過擬合」的傾向。一般來講應設計神經網路應優先考慮3層網路(即有1個隱層)。一般地,靠增加隱層節點數來獲得較低的誤差,其訓練效果要比增加隱層數更容易實現。對於沒有隱層的神經網路模型,實際上就是一個線性或非線性(取決於輸出層採用線性或非線性轉換函數型式)回歸模型。因此,一般認為,應將不含隱層的網路模型歸入回歸分析中,技術已很成熟,沒有必要在神經網路理論中再討論之。
二、隱層節點數
在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。
『捌』 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系
一、計算方法不同
1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。
3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、用途不同
1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:
(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;
(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;
(3)分類:把輸入向量所定義的合適方式進行分類;
(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。
聯系:
BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
三、作用不同
1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。
2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。
3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
(8)神經網路bp演算法擴展閱讀:
1、BP神經網路優劣勢
BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。
①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。
②容易陷入局部極小值。
③網路層數、神經元個數的選擇沒有相應的理論指導。
④網路推廣能力有限。
2、人工神經網路的特點和優越性,主要表現在以下三個方面
①具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。
②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
③具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
『玖』 如何用BP神經網路實現預測
BP神經網路具有任意復雜的模式分類能力和優良的多維函數映射能力,解決了簡單感知器不能解決的異或(Exclusive OR,XOR)和一些其他問題。從結構上講,BP網路具有輸入層、隱藏層和輸出層;從本質上講,BP演算法就是以網路誤差平方為目標函數、採用梯度下降法來計算目標函數的最小值。
『拾』 BP神經網路的原理的BP什麼意思
原文鏈接:http://tecdat.cn/?p=19936
在本教程中,您將學習如何在R語言中創建神經網路模型。
神經網路(或人工神經網路)具有通過樣本進行學習的能力。人工神經網路是一種受生物神經元系統啟發的信息處理模型。它由大量高度互連的處理元件(稱為神經元)組成,以解決問題。它遵循非線性路徑,並在整個節點中並行處理信息。神經網路是一個復雜的自適應系統。自適應意味著它可以通過調整輸入權重來更改其內部結構。
該神經網路旨在解決人類容易遇到的問題和機器難以解決的問題,例如識別貓和狗的圖片,識別編號的圖片。這些問題通常稱為模式識別。它的應用范圍從光學字元識別到目標檢測。
本教程將涵蓋以下主題:
神經網路概論
正向傳播和反向傳播
激活函數
R中神經網路的實現
案例
利弊
結論
神經網路概論
神經網路是受人腦啟發執行特定任務的演算法。它是一組連接的輸入/輸出單元,其中每個連接都具有與之關聯的權重。在學習階段,網路通過調整權重進行學習,來預測給定輸入的正確類別標簽。
人腦由數十億個處理信息的神經細胞組成。每個神經細胞都認為是一個簡單的處理系統。被稱為生物神經網路的神經元通過電信號傳輸信息。這種並行的交互系統使大腦能夠思考和處理信息。一個神經元的樹突接收來自另一個神經元的輸入信號,並根據這些輸入將輸出響應到某個其他神經元的軸突。
創建測試數據集
創建測試數據集:專業知識得分和溝通技能得分
預測測試集的結果
使用計算函數預測測試數據的概率得分。
現在,將概率轉換為二進制類。
預測結果為1,0和1。
利弊
神經網路更靈活,可以用於回歸和分類問題。神經網路非常適合具有大量輸入(例如圖像)的非線性數據集,可以使用任意數量的輸入和層,可以並行執行工作。
還有更多可供選擇的演算法,例如SVM,決策樹和回歸演算法,這些演算法簡單,快速,易於訓練並提供更好的性能。神經網路更多的是黑盒子,需要更多的開發時間和更多的計算能力。與其他機器學習演算法相比,神經網路需要更多的數據。NN僅可用於數字輸入和非缺失值數據集。一位著名的神經網路研究人員說:「神經網路是解決任何問題的第二好的方法。最好的方法是真正理解問題。」
神經網路的用途
神經網路的特性提供了許多應用方面,例如:
模式識別:神經網路非常適合模式識別問題,例如面部識別,物體檢測,指紋識別等。
異常檢測:神經網路擅長異常檢測,它們可以輕松檢測出不適合常規模式的異常模式。
時間序列預測:神經網路可用於預測時間序列問題,例如股票價格,天氣預報。
自然語言處理:神經網路在自然語言處理任務中提供了廣泛的應用,例如文本分類,命名實體識別(NER),詞性標記,語音識別和拼寫檢查。
最受歡迎的見解
1.r語言用神經網路改進nelson-siegel模型擬合收益率曲線分析
2.r語言實現擬合神經網路預測和結果可視化
3.python用遺傳演算法-神經網路-模糊邏輯控制演算法對樂透分析
4.用於nlp的python:使用keras的多標簽文本lstm神經網路分類
5.用r語言實現神經網路預測股票實例
6.R語言基於Keras的小數據集深度學習圖像分類
7.用於NLP的seq2seq模型實例用Keras實現神經機器翻譯
8.python中基於網格搜索演算法優化的深度學習模型分析糖
9.matlab使用貝葉斯優化的深度學習