導航:首頁 > 源碼編譯 > 安全演算法

安全演算法

發布時間:2022-01-30 18:40:46

① 安全期具體演算法

月經周期(最長與最短的天數)分別減掉14,然後再分別向前減3天,向後加一天,取出來的數值,選頭尾最長的期間,則是為危險期。 以一個月經周期是26天的女性來說,她的排卵日就在第12天,危險期就在第9天到第13天。 以一個月經周期大約是30~32天的女性來計算,她的排卵日約在周期的第16天到第18天,而危險期也就是第13天到第19天。(因為她月經周期有誤差,所以危險期也就必須拉長)。

② des演算法安全性分析

DES
是一個對稱演算法:加密和解密用的是同
一演算法(除密鑰編排不同以外),既可用於加密又可用於解密。它的核心技術是:在相信復雜函數可以通過簡單函數迭代若干圈得到的原則下,利用F函數及對合等運算,充分利用非線性運算。

至今,最有效的破解DES演算法的方法是窮舉搜索法,那麼56位長的密鑰總共要測試256次,如果每100毫秒可以測試1次,那麼需要7.2×1015秒,大約是228,493,000年。但是,仍有學者認為在可預見的將來用窮舉法尋找正確密鑰已趨於可行,所以若要安全保護10年以上的數據最好。

③ 賓士的安全演算法是27 命令位元組嗎

安全散列演算法SHA(Secure Hash Algorithm)是美國國家安全局 (NSA) 設計,美國國家標准與技術研究院(NIST) 發布的一系列密碼散列函數,包括 SHA-1、SHA-224、SHA-256、SHA-384 和 SHA-512 等變體。主要適用於數字簽名標准(DigitalSignature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。下面以 SHA-1為例,介紹該演算法計算消息摘要的原理。
對於長度小於2^64位的消息,SHA1會產生一個160位的消息摘要。當接收到消息的時候,這個消息摘要可以用來驗證數據的完整性。在傳輸的過程中,數據很可能會發生變化,那麼這時候就會產生不同的消息摘要。
SHA1有如下特性:不可以從消息摘要中復原信息;兩個不同的消息不會產生同樣的消息摘要。
一、術語和概念
(一)位(Bit),位元組(Byte)和字(Word)
SHA1始終把消息當成一個位(bit)字元串來處理。本文中,一個「字」(Word)是32位,而一個「位元組」(Byte)是8位。比如,字元串「abc」可以被轉換成一個位字元串:01100001 01100010 01100011。它也可以被表示成16進制字元串:0x616263.
(二)運算符和符號
下面的邏輯運算符都被運用於「字」(Word)
X^Y = X,Y邏輯與
X \/ Y = X,Y邏輯或
X XOR Y= X,Y邏輯異或
~X = X邏輯取反
X+Y定義如下:
字 X 和Y 代表兩個整數 x 和y, 其中0 <= x < 2^32 且 0 <= y < 2^32. 令整數z= (x + y) mod 2^32.這時候 0 <= z < 2^32. 將z轉換成字Z,那麼就是 Z = X + Y.
循環左移位操作符Sn(X)。X是一個字,n是一個整數,0<=n<=32。Sn(X)= (X<>32-n)
X<定義如下:拋棄最左邊的n位數字,將各個位依次向左移動n位,然後用0填補右邊的n位(最後結果還是32位)。X>>n是拋棄右邊的n位,將各個位依次向右移動n位,然後在左邊的n位填0。因此可以叫Sn(X)位循環移位運算
二、SHA1演算法描述
在SHA1演算法中,我們必須把原始消息(字元串,文件等)轉換成位字元串。SHA1演算法只接受位作為輸入。假設我們對字元串「abc」產生消息摘要。首先,我們將它轉換成位字元串如下:
01100001 0110001001100011
―――――――――――――
『a』=97 『b』=98『c』=99
這個位字元串的長度為24。下面我們需要5個步驟來計算MD5。
(一)補位
消息必須進行補位,以使其長度在對512取模以後的余數是448。也就是說,(補位後的消息長度)%512 = 448。即使長度已經滿足對512取模後余數是448,補位也必須要進行。
補位是這樣進行的:先補一個1,然後再補0,直到長度滿足對512取模後余數是448。總而言之,補位是至少補一位,最多補512位。還是以前面的「abc」為例顯示補位的過程。
原始信息:01100001 01100010 01100011
補位第一步:0110000101100010 01100011 1
首先補一個「1」
補位第二步:0110000101100010 01100011 10…..0
然後補423個「0」
我們可以把最後補位完成後的數據用16進制寫成下面的樣子
61626380 0000000000000000 00000000
00000000 0000000000000000 00000000
00000000 0000000000000000 00000000
00000000 00000000
現在,數據的長度是448了,我們可以進行下一步操作。
(二)補長度
所謂的補長度是將原始數據的長度補到已經進行了補位操作的消息後面。通常用一個64位的數據來表示原始消息的長度。如果消息長度不大於2^64,那麼第一個字就是0。在進行了補長度的操作以後,整個消息就變成下面這樣了(16進制格式)
61626380 0000000000000000 00000000
00000000 0000000000000000 00000000
00000000 0000000000000000 00000000
00000000 0000000000000000 00000018
如果原始的消息長度超過了512,我們需要將它補成512的倍數。然後我們把整個消息分成一個一個512位的數據塊,分別處理每一個數據塊,從而得到消息摘要。
(三)使用的常量
一系列的常量字K(0),K(1), ... , K(79),如果以16進制給出。它們如下:
Kt = 0x5A827999 (0<= t <= 19)
Kt = 0x6ED9EBA1 (20<= t <= 39)
Kt = 0x8F1BBCDC (40<= t <= 59)
Kt = 0xCA62C1D6 (60<= t <= 79).
(四)需要使用的函數
在SHA1中我們需要一系列的函數。每個函數ft (0 <= t <= 79)都操作32位字B,C,D並且產生32位字作為輸出。ft(B,C,D)可以如下定義
ft(B,C,D) = (B ANDC) or ((NOT B) AND D) ( 0 <= t <= 19)
ft(B,C,D) = B XOR CXOR D (20 <= t <= 39)
ft(B,C,D) = (B ANDC) or (B AND D) or (C AND D) (40 <= t <= 59)
ft(B,C,D) = B XOR CXOR D (60 <= t <= 79).
(五)計算消息摘要
必須使用進行了補位和補長度後的消息來計算消息摘要。計算需要兩個緩沖區,每個都由5個32位的字組成,還需要一個80個32位字的緩沖區。第一個5個字的緩沖區被標識為A,B,C,D,E。第二個5個字的緩沖區被標識為H0,H1, H2, H3, H4。80個字的緩沖區被標識為W0,W1,..., W79
另外還需要一個一個字的TEMP緩沖區。
為了產生消息摘要,在第4部分中定義的16個字的數據塊M1,M2,..., Mn
會依次進行處理,處理每個數據塊Mi 包含80個步驟。
在處理每個數據塊之前,緩沖區{Hi} 被初始化為下面的值(16進制)
H0 = 0x67452301
H1 = 0xEFCDAB89
H2 = 0x98BADCFE
H3 = 0x10325476
H4 = 0xC3D2E1F0.
現在開始處理M1, M2,... , Mn。為了處理 Mi,需要進行下面的步驟
(1). 將Mi 分成 16 個字 W0, W1, ... , W15,W0 是最左邊的字
(2). 對於t = 16 到 79 令 Wt = S1(Wt-3 XOR Wt-8XOR Wt- 14 XOR Wt-16).
(3). 令A = H0, B = H1, C = H2, D = H3, E = H4.
(4) 對於t = 0 到 79,執行下面的循環
TEMP = S5(A) +ft(B,C,D) + E + Wt + Kt;
E = D; D = C; C =S30(B); B = A; A = TEMP;
(5). 令H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E.
在處理完所有的 Mn, 後,消息摘要是一個160位的字元串,以下面的順序標識
H0 H1 H2 H3 H4.
對於SHA256、SHA384、SHA512。你也可以用相似的辦法來計算消息摘要。對消息進行補位的演算法完全是一樣的。
三、SHA演算法被破解了嗎?
2013年9月10日美國約翰霍普金斯大學的計算機科學教授,知名的加密演算法專家,Matthew Green被NSA要求刪除他的一份關於破解加密演算法的與NSA有關的博客。 同時約翰霍普金斯大學伺服器上的該博客鏡像也被要求刪除。

加密演算法專家,美國約翰霍普金斯大學教授Matthew Green
但當記者向該大學求證時,該校稱從未收到來自NSA的要求要刪除博客或鏡像的資料,但記者卻無法在原網址再找到該博客。幸運的是,從谷歌的緩存可以找到該博客。該博客提到NSA每年花費2.5億美元來為自己在解密信息方面獲取優勢,並列舉了NSA的一系列見不得人的做法。

在BitcoinTalk上,已經掀起了一輪爭論:到底SHA-2是否安全?
部分認為不安全的觀點包括:
NSA製造了sha-2, 我們不相信NSA,他們不可能不留後門。
棱鏡事件已經明白的告訴我們,政府會用一切可能的手段來監視與解密。
雖然有很多人會研究SHA-2,且目前沒有公開的證據表明有漏洞。但沒有公開這並不能代表就沒有,因為發現漏洞的人一定更傾向於保留這個秘密來自己利用,而不是公布。
部分認為安全的觀點包括:
SHA-2是應用廣泛的演算法,應該已經經歷了實踐的檢驗。
美國的對頭中國和俄國都有很多傑出的數學家,如果有問題的話,他們肯定已經發現了。
如果真的不安全,世界上安全的東西就太少了,我不能生活在提心吊膽里,所以我選擇相信安全。

④ 最安全的加密演算法

這個世界上沒有最安全,只有更安全,如果我告訴你,每一個加密軟體的序列號和密碼,被編碼到每一個比特和位元組上,那麼相當於每一人將擁有一套自己獨立的加密軟體。

⑤ 安全期的演算法

不會 假如你的周期是30天,即下一次是9月15日,一般情況前、後各三分之一周期即8月16日至8月25日,9月5日至9月15日是安全期,8月26日至9月5日為危險期。

⑥ 安全期的准確演算法

女性的排卵日期一般在下次月經來潮前的14天左右。下次月經來潮的第1天算起,倒數 14天或減去14天就是排卵日,排卵日及其前5天和後4天加在一起稱為排卵期。例如,某女的 月經周期為28天,本次月經來潮的第1天在12月2日,那麼下次月經來潮是在12月30日(12月2日加28天),再從12月30日減去14天,則12月16日就是排卵日。排卵日及其前5天和後4天 ,也就是12月11-20日為排卵期。除了月經期和排卵期,其餘的時間均為安全期。以下網址可查詢:http://lady.qq.com/sex/aqq.htm女性安全期自測。

⑦ 請教安全期演算法

這要根據月經周期來確定。 正常育齡女性每個月來1次月經,從本次月經來潮開始到下次月經來潮第1天,稱為1個月經周期。如從避孕方面考慮,可以將女性的每個月經周期分為月經期、排卵期和安全期。安全期避孕就是在排卵期內停止性生活的一種避孕方法。這是一種傳統的避孕方法,在避孕葯和宮內節育器問世之前是國內外常用的避孕方法之一。 女性的排卵日期一般在下次月經來潮前的14天左右。卵子自卵巢排出後在輸卵管的內能生存1-2天,以等待受精;男子的精子在女子的生殖道內可維持2-3天受精能,故在卵子排出的前後幾天里性交容易受孕。為了保險起見,我們將排卵日的前5天和後4天,連同排卵日在內共10天稱為排卵期。因為在排卵期內性交容易受孕,所以排卵期又稱為易受孕期或危險期。 安全期又分為排卵前安全期和排卵後安全期。從月經干凈那天到排卵期開始的前一天的那段日期為排卵前安全期。從排卵期結束後的第一天到下次月經來潮的前一天為排卵後安全期。排卵後安全期比排卵前安全期更安全。這是因為有些女性有時受環境變化和情緒波動等影響使排卵提前,這樣排卵前安全期就會縮短,而自已並不知道,這樣排卵前安全期就不大安全了。卵巢在一個月經周期中先後排兩次卵的機會是極少的,即排卵後到下次月經來潮前這段時間一般不會再發生第二次排卵,所以,排卵後安全期就比較安全。 採用安全期避孕的關鍵是測定女性的排卵日期。卵巢排卵時,一般沒有特殊感覺,即使有些女性可能有下腹痛、腰酸、乳房發脹及情緒改變等症狀,但這些現象不是排卵時的特有症狀,故不能作為排卵的依據。月經和排卵呈周期性變化,兩者之間有著密切的關系,如果掌握了兩者的變化規律,就可以通過間接的方法來測定排卵日期。測定排卵日期的方法很多,而女性能夠自已掌握的方法有:根據月經周期推算、測量基礎體溫以及觀察宮頸粘液分泌等。 按月經周期來推算排卵期 按月經周期推算排卵期的方法又稱為日歷法。月經和排卵都受腦下垂體和卵巢的內分泌激素的影響而呈現周期性變化,兩者的周期長短是一致的,都是每個月1個周期,而排卵發生在兩次月經中間。女性的月經周期有長有短,但排卵日與下次月經開始之間的間隔時間比較固定,一般在14天左右。根據排卵和月經之間的這種關系,就可以按月經周期來推算排卵期。推算方法是從下次月經來潮的第1天算起,倒數14天或減去14天就是排卵日,排卵日及其前5天和後4天加在一起稱為排卵期。這就是安全期避孕法的理論根據。例如,某女的月經周期為28天,本次月經來潮的第1天在12月2日,那麼下次月經來潮是在12月30日(12月2日加28天),再從12月30日減去14天,則12月16日就是排卵日。排卵日及其前5天和後4天,也就是12月11-20日為排卵期。除了月經期和排卵期,其餘的時間均為安全期。在安全期性交可不必採用任何避孕葯物和避孕工具。 用這種方法推算排卵期,首先要知道月經周期的長短,才能推算出下次月經來潮的開始日期和排卵期,所以只能適用於月經周期一向正常的女性。對於月經周期不規則的女性因無法推算出下次月經來潮的日期。故也無法推算到排卵日和排卵期。 採用日歷法避孕容易失敗。因為有些女性有時因健康情況、環境改變及情緒波動等可以使排卵推遲或提前,這樣按月經周期推算出來的排卵期就不夠正確。據國外統計,採用日歷法避孕的失敗率達14.4%-47%。因此,這種方法僅適用於月經周期正常、長期生活在一起、並能正確掌握推算安全期的人使用。對於月經周期不規律者、探親期夫婦以及生活環境改變的女性等使用這種方法是不可靠的。

⑧ 關於安全期演算法~~

安全期是月經前後各一周,即月經來前得一周及干凈後的一周內,老話叫「前七後八」嘛,不過這個可不絕對,但是你又吃了緊急避孕葯肯定沒有問題了。試紙這個東西也是因人而異的,有的人要下次月經期過一周甚至半月才能試出來,有的人反映就比較明顯,我懷孕那會兒因為是准備要寶寶的,所以還沒等到下次月經期就試了,結果試紙就顯示陽性。妹子,女人一定要善待自己,小心為上,否則遭罪的是自己。

⑨ 目前讓密碼最安全的演算法是什麼

加密演算法

加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。

對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。

不對稱加密演算法 不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。

不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

加密技術

加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。

非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。

PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。

數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。

PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。

加密的未來趨勢

盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。

在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。

由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。

目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。

閱讀全文

與安全演算法相關的資料

熱點內容
工作三年的大專程序員 瀏覽:726
java畢業設計文獻 瀏覽:140
籌碼集中度指標源碼 瀏覽:478
listsortjava 瀏覽:183
plc閃光電路編程實例 瀏覽:299
socket編程試題 瀏覽:204
華為的伺服器怎麼設置從光碟機啟動 瀏覽:868
程序員真的累嗎 瀏覽:326
學信網app為什麼刷臉不了 瀏覽:873
天蠍vs程序員 瀏覽:993
單片機下載口叫什麼 瀏覽:188
程序員的道 瀏覽:926
雲伺服器不實名違法嗎 瀏覽:558
怎樣查看文件夾圖片是否重復 瀏覽:995
文件怎麼導成pdf文件 瀏覽:808
打開sql表的命令 瀏覽:103
安卓手機如何面部支付 瀏覽:38
天元數學app為什麼登錄不上去 瀏覽:824
明日之後為什麼有些伺服器是四個字 瀏覽:104
安卓系統l1是什麼意思 瀏覽:26