導航:首頁 > 源碼編譯 > 動態重編譯jump

動態重編譯jump

發布時間:2022-02-02 13:23:23

『壹』 MASM編譯 error A2075: jump destination too far : by 10 byte(s)

把short去掉試試

『貳』 重新編譯了一下linux內核,現在系統進不去了。。。

你可以用ubuntu 安裝盤來修改grub.cfg。(改回默認引導)

『叄』 cannot jump from this goto statement to its label 什麼意思

cannot jump from this goto statement to its label
不能跳出這個語句標簽
重點詞彙釋義
cannot不能; 未可; 不可
jump from激增
goto statement轉向語句
label標簽; 稱標記,符號; 門或窗戶上面的線腳; 貼標簽於; 把…稱為; 把…列為; 用

『肆』 編譯原理課程設計

%{

/* FILENAME: C.Y */

%}
#define YYDEBUG_LEXER_TEXT (yylval) /* our lexer loads this up each time */
#define YYDEBUG 1 /* get the pretty debugging code to compile*/
#define YYSTYPE char * /* interface with flex: should be in header file */
/* Define terminal tokens */
/* keywords */
%token AUTO DOUBLE INT STRUCT
%token BREAK ELSE LONG SWITCH
%token CASE ENUM REGISTER TYPEDEF
%token CHAR EXTERN RETURN UNION
%token CONST FLOAT SHORT UNSIGNED
%token CONTINUE FOR SIGNED VOID
%token DEFAULT GOTO SIZEOF VOLATILE
%token DO IF STATIC WHILE
/* ANSI Grammar suggestions */
%token IDENTIFIER STRINGliteral
%token FLOATINGconstant INTEGERconstant CHARACTERconstant
%token OCTALconstant HEXconstant
/* New Lexical element, whereas ANSI suggested non-terminal */
%token TYPEDEFname /* Lexer will tell the difference between this and
an identifier! An identifier that is CURRENTLY in scope as a
typedef name is provided to the parser as a TYPEDEFname.*/
/* Multi-Character operators */
%token ARROW /* -> */
%token ICR DECR /* ++ -- */
%token LS RS /* << >> */
%token LE GE EQ NE /* <= >= == != */
%token ANDAND OROR /* && || */
%token ELLIPSIS /* ... */
/* modifying assignment operators */
%token MULTassign DIVassign MODassign /* *= /= %= */
%token PLUSassign MINUSassign /* += -= */
%token LSassign RSassign /* <<= >>= */
%token ANDassign ERassign ORassign /* &= ^= |= */
%start translation_unit
%%
/* CONSTANTS */
constant:
INTEGERconstant
| FLOATINGconstant
/* We are not including ENUMERATIONconstant here because we
are treating it like a variable with a type of "enumeration
constant". */
| OCTALconstant
| HEXconstant
| CHARACTERconstant
;

string_literal_list:
STRINGliteral
| string_literal_list STRINGliteral
;
/************************* EXPRESSIONS ********************************/
primary_expression:
IDENTIFIER /* We cannot use a typedef name as a variable */
| constant
| string_literal_list
| '(' comma_expression ')'
;
postfix_expression:
primary_expression
| postfix_expression '[' comma_expression ']'
| postfix_expression '(' ')'
| postfix_expression '(' argument_expression_list ')'
| postfix_expression {} '.' member_name
| postfix_expression {} ARROW member_name
| postfix_expression ICR
| postfix_expression DECR
;
member_name:
IDENTIFIER
| TYPEDEFname
;
argument_expression_list:
assignment_expression
| argument_expression_list ',' assignment_expression
;
unary_expression:
postfix_expression
| ICR unary_expression
| DECR unary_expression
| unary_operator cast_expression
| SIZEOF unary_expression
| SIZEOF '(' type_name ')'
;
unary_operator:
'&'
| '*'
| '+'
| '-'
| '~'
| '!'
;
cast_expression:
unary_expression
| '(' type_name ')' cast_expression
;
multiplicative_expression:
cast_expression
| multiplicative_expression '*' cast_expression
| multiplicative_expression '/' cast_expression
| multiplicative_expression '%' cast_expression
;
additive_expression:
multiplicative_expression
| additive_expression '+' multiplicative_expression
| additive_expression '-' multiplicative_expression
;
shift_expression:
additive_expression
| shift_expression LS additive_expression
| shift_expression RS additive_expression
;
relational_expression:
shift_expression
| relational_expression '<' shift_expression
| relational_expression '>' shift_expression
| relational_expression LE shift_expression
| relational_expression GE shift_expression
;
equality_expression:
relational_expression
| equality_expression EQ relational_expression
| equality_expression NE relational_expression
;
AND_expression:
equality_expression
| AND_expression '&' equality_expression
;
exclusive_OR_expression:
AND_expression
| exclusive_OR_expression '^' AND_expression
;
inclusive_OR_expression:
exclusive_OR_expression
| inclusive_OR_expression '|' exclusive_OR_expression
;
logical_AND_expression:
inclusive_OR_expression
| logical_AND_expression ANDAND inclusive_OR_expression
;
logical_OR_expression:
logical_AND_expression
| logical_OR_expression OROR logical_AND_expression
;
conditional_expression:
logical_OR_expression
| logical_OR_expression '?' comma_expression ':'
conditional_expression
;
assignment_expression:
conditional_expression
| unary_expression assignment_operator assignment_expression
;
assignment_operator:
'='
| MULTassign
| DIVassign
| MODassign
| PLUSassign
| MINUSassign
| LSassign
| RSassign
| ANDassign
| ERassign
| ORassign
;
comma_expression:
assignment_expression
| comma_expression ',' assignment_expression
;
constant_expression:
conditional_expression
;
/* The following was used for clarity */
comma_expression_opt:
/* Nothing */
| comma_expression
;
/******************************* DECLARATIONS *********************************/
/* The following is different from the ANSI C specified grammar.
The changes were made to disambiguate typedef's presence in
declaration_specifiers (vs. in the declarator for redefinition);
to allow struct/union/enum tag declarations without declarators,
and to better reflect the parsing of declarations (declarators
must be combined with declaration_specifiers ASAP so that they
are visible in scope).
Example of typedef use as either a declaration_specifier or a
declarator:
typedef int T;
struct S { T T;}; /* redefinition of T as member name * /
Example of legal and illegal statements detected by this grammar:
int; /* syntax error: vacuous declaration * /
struct S; /* no error: tag is defined or elaborated * /
Example of result of proper declaration binding:
int a=sizeof(a); /* note that "a" is declared with a type in
the name space BEFORE parsing the initializer * /
int b, c[sizeof(b)]; /* Note that the first declarator "b" is
declared with a type BEFORE the second declarator is
parsed * /
*/
declaration:
sue_declaration_specifier ';'
| sue_type_specifier ';'
| declaring_list ';'
| default_declaring_list ';'
;
/* Note that if a typedef were redeclared, then a declaration
specifier must be supplied */
default_declaring_list: /* Can't redeclare typedef names */
declaration_qualifier_list identifier_declarator {} initializer_opt
| type_qualifier_list identifier_declarator {} initializer_opt
| default_declaring_list ',' identifier_declarator {} initializer_opt
;

declaring_list:
declaration_specifier declarator {} initializer_opt
| type_specifier declarator {} initializer_opt
| declaring_list ',' declarator {} initializer_opt
;

declaration_specifier:
basic_declaration_specifier /* Arithmetic or void */
| sue_declaration_specifier /* struct/union/enum */
| typedef_declaration_specifier /* typedef*/
;

type_specifier:
basic_type_specifier /* Arithmetic or void */
| sue_type_specifier /* Struct/Union/Enum */
| typedef_type_specifier /* Typedef */
;

declaration_qualifier_list: /* const/volatile, AND storage class */
storage_class
| type_qualifier_list storage_class
| declaration_qualifier_list declaration_qualifier
;

type_qualifier_list:
type_qualifier
| type_qualifier_list type_qualifier
;

declaration_qualifier:
storage_class
| type_qualifier /* const or volatile */
;

type_qualifier:
CONST
| VOLATILE
;

basic_declaration_specifier: /*Storage Class+Arithmetic or void*/
declaration_qualifier_list basic_type_name
| basic_type_specifier storage_class
| basic_declaration_specifier declaration_qualifier
| basic_declaration_specifier basic_type_name
;

basic_type_specifier:
basic_type_name /* Arithmetic or void */
| type_qualifier_list basic_type_name
| basic_type_specifier type_qualifier
| basic_type_specifier basic_type_name
;

sue_declaration_specifier: /* Storage Class + struct/union/enum */
declaration_qualifier_list elaborated_type_name
| sue_type_specifier storage_class
| sue_declaration_specifier declaration_qualifier
;

sue_type_specifier:
elaborated_type_name /* struct/union/enum */
| type_qualifier_list elaborated_type_name
| sue_type_specifier type_qualifier
;

typedef_declaration_specifier: /*Storage Class + typedef types */
typedef_type_specifier storage_class
| declaration_qualifier_list TYPEDEFname
| typedef_declaration_specifier declaration_qualifier
;

typedef_type_specifier: /* typedef types */
TYPEDEFname
| type_qualifier_list TYPEDEFname
| typedef_type_specifier type_qualifier
;

storage_class:
TYPEDEF
| EXTERN
| STATIC
| AUTO
| REGISTER
;

basic_type_name:
INT
| CHAR
| SHORT
| LONG
| FLOAT
| DOUBLE
| SIGNED
| UNSIGNED
| VOID
;

elaborated_type_name:
aggregate_name
| enum_name
;

aggregate_name:
aggregate_key '{' member_declaration_list '}'
| aggregate_key identifier_or_typedef_name
'{' member_declaration_list '}'
| aggregate_key identifier_or_typedef_name
;

『伍』 C文件如何成為可執行文件(編譯、鏈接、執行)——摘自《程序員的自我修養》

本文算是我閱讀《程序員的自我修養》(俞甲子等著)相關章節的筆記,文中直接引用了原書中的敘述,強烈建議大家去看原書,本文只做概要介紹而用。——註:文中有很多引用圖的地方,請大家自己去找原書看,支持正版!我遇到一個問題,Linux C編程中的問題:.. char *p; unsigned int i = 0xcccccccc; unsigned int j; p = (char *) &i; printf("%.2x %.2x %.2x %.2x\n", *p, p[1], p[2], p[3]); memcpy(&j, p, sizeof(unsigned int)); printf("%x\n", j); ... Output: ffffffcc ffffffcc ffffffcc ffffffcc 0xcccccccc My questions are: 1. Why it prints "ffffffcc ffffffcc ffffffcc ffffffcc"? (if p is unsigned char* then it will print correctly "cc cc cc cc") 2. Why pointer to char p copied to j correctly, why not every member in p overflow? since it is a signed char. 這是別人在郵件列表中提出的問題,在試圖回答這個問題的過程中,突然發現,自己對連接器的工作並不熟悉,因此拿來好書《程序員的自我修養》來看,並做如下匯報,強烈推薦《程序員的自我修養》!!!寫好的C語言文件,最終能夠執行,大致要經過預處理、編譯、匯編、鏈接、裝載五個過程。預編譯完成的工作: (1)將所有的"#define"刪除,並展開所有的宏定義 (2)處理所有條件預編譯指令 (3)處理#include預編譯指令,將被包含的文件插入到預編譯指令的位置,這個過程是遞歸進行的。 (4)刪除所有的注釋 (5)添加行號和文件名標識,以便調試 (6)保留所有的#pragma編譯器命令,因為編譯器需要使用它們。編譯完成的工作: (1)詞法分析 掃描源代碼序列,並將其分割為一系列的記號(Token)。 (2)語法分析 用語法分析器生成語法樹,確定運算符號的優先順序和含義、報告語法錯誤。 (3)語義分析 靜態語義分析包括生命和類型的匹配,類型的轉換;動態語義分析一般是在運行期出現的與語義相關性的問題,如除0錯。 (4)源代碼生成 源代碼級優化器在源代碼級別進行優化:如將如(6+2)之類的表達式,直接優化為(8)等等。將語法書轉換為中間代碼,如三地址碼、P-代碼等。 (5)代碼生成 將源代碼轉換為目標代碼,依賴於目標機器。 (6)目標代碼優化匯編完成的工作: 將匯編代碼變成機器可以執行的指令鏈接完成的工作: 鏈接完成的工作主要是將各個模塊之間相互引用的部分處理好,使得各個模塊之間正確銜接。鏈接過程包括:地址和空間分配、符號決議和重定位。 首先講靜態鏈接,基本的靜態鏈接如下: 我們可能在main函數中調用到定義在另一個文件中的函數foo(),但是由於每個模塊式單獨編譯的,因此main並不知道foo的地址,所以它暫時把這些調用foo的指令的目標地址擱置,等到最後鏈接的時候讓連接器去修正這些地址(重定位),這就是靜態鏈接最基本的過程和作用;對於定義在其他文件中的變數,也存在相同的問題。具體過程如下: (1)空間和地址分配 1)空間與地址分配:掃描所有輸入目標文件,獲得各個段的屬性、長度和位置,並且將目標文件中的符號表中所有的符號定義和符號引用收集起來,放到一個全局符號表中。 2)符號解析和重定位:使用第一步收集到的信息,讀取輸入文件中段的數據、重定位信息,並進行符號解析與重定位、調整代碼中的地址等。 動態鏈接的過程更為復雜,但是完成的工作類似。 動態鏈接的初衷是為了解決空間浪費和更新困難的問題,把鏈接過程推遲到運行時進行 首先介紹一個重要的概念——地址無關代碼。為了解決固定裝載地址沖突的問題,我們希望對所有絕對地址的引用不作重定位,而把這一步推遲到裝載的時候再完成,一旦模塊裝載地址確定,即目標地址確定,那麼系統對程序中所有的絕對地址引用進行重定位。同時我們希望,模塊中共享的指令部分在裝載時不需要因為裝載地址的改變而改變,所以把指令中那些需要被修改的部分分離出來,跟數據放在一起,這樣指令部分就可以保持不變,而數據部分可以在每個進程中擁有一個副本,這種方案目前被稱為地址無關代碼(PIC,Position-independent Code)。 我們需要解決如下四種引用中的重定位問題: 1)模塊內部調用或者跳轉:這個可以用相對地址調用或者基於寄存器的相對調用,所以不需要重定位2)模塊內部數據的訪問:用相對定址的方法,不過鏈接器實現得十分巧妙: call494 add$0x188c, %ecx mov$0x1, 0x28(%ecx) //a=1 調用一個叫做__i686.get_pc_thunk.cx的函數,把call的下一條指令的地址放到ecx寄存器中,接著執行一條mov指令和一個add指令3)模塊間數據的訪問:在數據段里建立一個指向全局變數的指針數組,也成全局便宜表(GOT),當要引用全局變數時,可以通過GOT相對應的項間接引用: GOT是做到指令無關的重要的一環:在編譯時可以確定GOT相對於當前指令的偏移,根據變數地址在GOT中的偏移就可以得到變數的地址,當然GOT中哪個每個地址對應於哪個變數是由編譯器決定的。4)模塊間的調用、跳轉:採用上面類似的方法,不同的是GOT中相應的項存儲的是目標函數的地址,當模塊需要調用目標函數時,可以通過GOT中的項進行間接跳轉。 地址無關代碼小結: 現在,來看動態鏈接中的另一個重要問題——延遲綁定(PLT)。當函數第一次被用到時才進行綁定,否則不綁定。PLT為了實現延遲綁定,增加了一層間接跳轉。調用函數並不是通過GOT跳轉的,而是通過一個叫PLT項的結構進行跳轉的,每個外部函數在PLT中都有對應的項,如函數bar,其在PLT對應的項的地址記為bar@plt,實現方式如下: bar@plt: jmp* (bar@GOT) pushn pushmoleID jump_dl_runtime_resolve 鏈接器的這個實現至為巧妙: 如果在連接器初始化階段,已經正確的初始化了bar@GOT,那麼這個跳轉指令的結果正是我們所期望的,但是,為了實現PLT,一般在連接器初始化時,將"pushn"的地址放入到bar@GOT中,這樣就直接跳轉到第二條指令,相當於沒有進行任何操作。第二條指令「pushn」,n是bar這個符號引用在重定位表「.rel.plt」中的下標。接著將模塊的ID壓棧,跳轉到_dl_runtime_resolve完成符號解析和重定位工作,然後將bar的地址填入到bar@GOT中。下次再調用到bar時,則bar@GOT中存儲的是一個正確的地址,這樣就完成了整個過程。 在鏈接完成之後,就生成了你要的可執行文件了,如ELF文件,至於這個文件的詳細的信息,可以參考相關的文檔。 現在,你要運行你的可執行文件,這是如何做到的呢? 我們從操作系統的角度來看可執行文件的裝載過程。操作系統主要做如下三件事情:(1)創建一個獨立的虛擬地址空間,但由於採用了COW機制,這里只是復制了父進程的頁目錄和頁表,甚至不設置映射關系(參考操作系統相關書籍)。(2)讀取可執行文件頭,並且建立虛擬空間與可執行文件的映射關系。(3)將CPU的指令寄存器設置成可執行文件的入口地址,啟動運行。我們來看一下執行過程中,進程虛擬空間的分布。 首先我們來區分Section和Segment,都可以翻譯為「段」,那麼有什麼不同呢?從鏈接的角度來講,elf文件是按照Section存儲的,從裝載的角度講,elf文件是按照Segment存儲的。」Segment」實際上是從裝載的角度重新劃分了ELF的各個段,將其中屬性相似的Section合並為一個Segment,而系統是按照Segment來映射可執行文件的。

『陸』 大神啊!幫我看看這個匯編程序段為什麼編譯的時候總是顯示jump out of range by 11 bytes!!!

http://..com/question/1048235031443117619

參考一下吧。

『柒』 gcc 生成動態庫時-fpic選項是什麼意思。

fpic:產生位置無關碼

解釋一下,位置無關碼就是可以在進程的任意內存位置執行的目標碼,動態鏈接庫必須使用。

『捌』 為什麼我在官網上下載的codeblock寫完代碼後編譯執行不了

我也覺得作為一個優秀的IDE,不可能沒有這個功能。
這幾天研究了一下,找到了這個功能了。
返回原來的,是菜單欄里的View - Jump - Jump Back。
當然,這樣按很不方便,可以自己設置快捷鍵的。
在Setting 裡面的Editor 的Keyboard Shortcut里設置。
如果沒有這個,可能是安裝的時候,沒有裝全,可以重新裝一次,
選擇安裝組件時,注意把codeblocks-contrib下面的裝上,這樣會多很多插件,其中包括了鍵盤快捷鍵設置的插件。(我也是今天才發現這個沒裝,裝上後可訂制性大大增強了)

『玖』 corejump 怎麼用gdb調試

1: 對於在應用程序中加入參數進行調試的方法: 直接用 gdb app -p1 -p2 這樣進行調試是不行的。 需要像以下這樣使用: #gdb app (gdb) r -p1 -p2 或者在運行run命令前使用set args命令: (gdb) set args p1 p2 可以用show args 命令來查看 2. 加入斷點: break <linenumber> break <funcName> break +offset break -offset (在當前行號的前面或後面的offset行停住。) break filename:linenum 在源文件filename的linenum行處停住。 break filename:function 在源文件filename的function函數的入口處停住。 break ... if ...可以是上述的參數,condition表示條件,在條件成立時停住。比如在循環境體中,可以設置 break if i=100,表示當i為100時停住程序。 3. 查看運行時的堆棧: 使用bt命令 4. 列印某個變數的值: print val 5. 單步: n 繼續運行:c step 單步跟蹤,如果有函數調用,他會進入該函數。 next 同樣單步跟蹤,如果有函數調用,他不會進入該函數。很像VC等工具中的step over。後面可以加count也可以不加,不加表示一條條地執行,加表示執行後面的count條指令,然後再停住。 set step-mode set step-mode on 打開step-mode模式,於是,在進行單步跟蹤時,程序不會因為沒有debug信息而不停住。這個參數有很利於查看機器碼。 set step-mod off 關閉step-mode模式。 finish 運行程序,直到當前函數完成返回。並列印函數返回時的堆棧地址和返回值及參數值等信息。 until 或 u 當你厭倦了在一個循環體內單步跟蹤時,這個命令可以運行程序直到退出循環體。 6.在GDB中執行shell命令: 在gdb環境中,你可以執行UNIX的shell的命令,使用gdb的shell命令來完成: eg. shell make 7. 運行環境 可設定程序的運行路徑。 show paths 查看程序的運行路徑。 set environment varname [=value] 設置環境變數。如:set env USER=hchen show environment [varname] 查看環境變數。 8.觀察點(WatchPoint) 觀察點一般來觀察某個表達式(變數也是一種表達式)的值是否有變化了,如果有變化,馬上停住程 序。我們有下面的幾種方法來設置觀察點: watch 為表達式(變數)expr設置一個觀察點。一量表達式值有變化時,馬上停住程序。 rwatch 當表達式(變數)expr被讀時,停住程序。 awatch 當表達式(變數)的值被讀或被寫時,停住程序。 info watchpoints 列出當前所設置了的所有觀察點。 9. 維護breakpoint clear 清除所有的已定義的停止點。 clear func 清除所有設置在函數上的停止點。 delete [breakpoints] [range...] 刪除指定的斷點,breakpoints為斷點號。如果不指定斷點號,則表示刪除所有的斷點。range 表示斷點號的范圍(如:3-7)。其簡寫命令為d。 比刪除更好的一種方法是disable停止點,disable了的停止點,GDB不會刪除,當你還需要時,enable即可,就好像回收站一樣。 disable [breakpoints] [range...] disable所指定的停止點,breakpoints為停止點號。如果什麼都不指定,表示disable所有的停止 點。簡寫命令是dis. enable [breakpoints] [range...] enable所指定的停止點,breakpoints為停止點號。 10、程序變數 查看文件中某變數的值: file::variable function::variable 可以通過這種形式指定你所想查看的變數,是哪個文件中的或是哪個函數中的。例如,查看文件f2.c中的全局變數x的值: gdb) p 'f2.c'::x 查看數組的值 有時候,你需要查看一段連續的內存空間的值。比如數組的一段,或是動態分配的數據的大小。你可以使用GDB的「@」操作符,「@」的左邊是第一個內存的地址的值,「@」的右邊則你你想查看內存的長度。例如,你的程序中有這樣的語句: int *array = (int *) malloc (len * sizeof (int)); 於是,在GDB調試過程中,你可以以如下命令顯示出這個動態數組的取值: p *array@len 如果是靜態數組的話,可以直接用print數組名,就可以顯示數組中所有數據的內容了。 11.輸出格式 一般來說,GDB會根據變數的類型輸出變數的值。但你也可以自定義GDB的輸出的格式。例如,你想輸出一個整數的十六進制,或是二進制來查看這個整型變數的中的位的情況。要做到這樣,你可以使用GDB的數據顯示格式: x 按十六進制格式顯示變數。 d 按十進制格式顯示變數。 u 按十六進制格式顯示無符號整型。 o 按八進制格式顯示變數。 t 按二進制格式顯示變數。 a 按十六進制格式顯示變數。 c 按字元格式顯示變數。 f 按浮點數格式顯示變數。 (gdb) p i $21 = 101 (gdb) p/a i $22 = 0x65 (gdb) p/c i $23 = 101 'e' (gdb) p/f i $24 = 1.41531145e-43 (gdb) p/x i $25 = 0x65 (gdb) p/t i $26 = 1100101 11.查看內存 使用examine命令(簡寫是x)來查看內存地址中的值。x命令的語法如下所示: x/ n、f、u是可選的參數。 n 是一個正整數,表示顯示內存的長度,也就是說從當前地址向後顯示幾個地址的內容。 f 表示顯示的格式,參見上面。如果地址所指的是字元串,那麼格式可以是s,如果地十是指令地址,那麼格式可以是i。 u 表示從當前地址往後請求的位元組數,如果不指定的話,GDB默認是4個bytes。u參數可以用下面的字元來代替,b表示單位元組,h表示雙位元組,w表示四位元組,g表示八位元組。當我們指定了位元組長度後,GDB會從指內存定的內存地址開始,讀寫指定位元組,並把其當作一個值取出來。 n/f/u三個參數可以一起使用。例如: 命令:x/3uh 0x54320 表示,從內存地址0x54320讀取內容,h表示以雙位元組為一個單位,3表示三個單位,u表示按十六進制顯示。 12.自動顯示 你可以設置一些自動顯示的變數,當程序停住時,或是在你單步跟蹤時,這些變數會自動顯示。相關的GDB命令是display。 display display/ display/ expr expr是一個表達式,fmt表示顯示的格式,addr表示內存地址,當你用display設定好了一個或多個表達式後,只要你的程序被停下來,GDB會自動顯示你所設置的這些表達式的值。 格式i和s同樣被display支持,一個非常有用的命令是: display/i $pc undisplay delete display 刪除自動顯示,dnums意為所設置好了的自動顯式的編號。 disable display enable display disable和enalbe不刪除自動顯示的設置,而只是讓其失效和恢復。 info display 查看display設置的自動顯示的信息。GDB會打出一張表格,向你報告當然調試中設置了多少個自動顯示設置,其中包括,設置的編號,表達式,是否enable。 13. 設置顯示選項 set print address set print address on 打開地址輸出,當程序顯示函數信息時,GDB會顯出函數的參數地址。系統默認為打開的, show print address 查看當前地址顯示選項是否打開。 set print array set print array on 打開數組顯示,打開後當數組顯示時,每個元素佔一行,如果不打開的話,每個元素則以逗號分隔。這個選項默認是關閉的。與之相關的兩個命令如下,我就不再多說了。 set print array off show print array set print elements 這個選項主要是設置數組的,如果你的數組太大了,那麼就可以指定一個來指定數據顯示的最大長度,當到達這個長度時,GDB就不再往下顯示了。如果設置為0,則表示不限制。 show print elements 查看print elements的選項信息。 set print null-stop 如果打開了這個選項,那麼當顯示字元串時,遇到結束符則停止顯示。這個選項默認為off。 set print pretty on 如果打開printf pretty這個選項,那麼當GDB顯示結構體時會比較漂亮。 14.關於顯示源碼list

『拾』 the monkey jump ()the tree。選擇題A、in B、on C、into

選C .
這里先排除 on,因為樹上結的果實用 on,外來物用in,但jump 是動態動詞,需和動態介詞連用,in 是靜態介詞,而into 是動態介詞,所以選 into,也就是 C.答案。

閱讀全文

與動態重編譯jump相關的資料

熱點內容
解壓不了是什麼意思 瀏覽:359
紐西蘭編程師年薪 瀏覽:321
程序員為什麼大多生閨女 瀏覽:51
c編程用英文還是中文 瀏覽:723
一點都不解壓的游戲 瀏覽:203
解壓為什麼不能用中文文件夾 瀏覽:615
伺服器如何解除備份 瀏覽:144
安卓手機為什麼用一年就變卡 瀏覽:11
如何用風變編程自動回復 瀏覽:512
安卓閱讀幣怎麼樣 瀏覽:437
京東app怎麼切號 瀏覽:583
進入傳奇伺服器後如何修改 瀏覽:42
m0單片機的cycle怎麼知道 瀏覽:806
linux命令太長 瀏覽:782
壓縮機nb1111y是多少w 瀏覽:45
打賞視頻用什麼伺服器好 瀏覽:154
方舟好友伺服器怎麼加mod 瀏覽:982
javaresponse設置編碼 瀏覽:842
opc數據採集源碼 瀏覽:563
命令女孩子 瀏覽:691