導航:首頁 > 源碼編譯 > 編譯原理符號表

編譯原理符號表

發布時間:2022-02-05 06:10:10

Ⅰ 正在學習編譯原理,語法圖應該用什麼軟體畫會比較簡單一點

一般用YACC畫,不過建議用GOLD PARSER。畫起來最快,不要編程
步驟:
1)寫出正確的文法。
2)在測試窗口中輸入要分析的字元串。

Ⅱ 編譯原理一個小問題

是這樣的, scanf是一個函數(該函數已經定義了),而「scanf()」這就話就是如何使用該函數的。 到你知道什麼是函數的時候你就懂了。 就像數學中y=f(x) 函數,例如:y=2*x 。 當你設置一個x的值後,你就可以通過該函數獲取對應的y值。

Ⅲ 這個在編譯原理中什麼意思啊

大學課程為什麼要開設編譯原理呢?這門課程關注的是編譯器方面的產生原理和技術問題,似乎和計算機的基礎領域不沾邊,可是編譯原理卻一直作為大學本科的必修課程,同時也成為了研究生入學考試的必考內容。編譯原理及技術從本質上來講就是一個演算法問題而已,當然由於這個問題十分復雜,其解決演算法也相對復雜。我們學的數據結構與演算法分析也是講演算法的,不過講的基礎演算法,換句話說講的是演算法導論,而編譯原理這門課程講的就是比較專註解決一種的演算法了。在20世紀50年代,編譯器的編寫一直被認為是十分困難的事情,第一Fortran的編譯器據說花了18年的時間才完成。在人們嘗試編寫編譯器的同時,誕生了許多跟編譯相關的理論和技術,而這些理論和技術比一個實際的編譯器本身價值更大。就猶如數學家們在解決著名的哥德巴赫猜想一樣,雖然沒有最終解決問題,但是其間誕生不少名著的相關數論。推薦參考書雖然編譯理論發展到今天,已經有了比較成熟的部分,但是作為一個大學生來說,要自己寫出一個像TurbocC,Java那樣的編譯器來說還是太難了。不僅寫編譯器困難,學習編譯原理這門課程也比較困難。第一本書的原名叫《CompilersPrinciples,Techniques,andTools》,另外一個響亮的名字就是龍書。原因是這本書的封面上有條紅色的龍,也因為獗臼樵詒嘁朐?砘?嘴域確實?忻?所以很多國外的學者都直接取名為龍書。最近機械工業出版社已經出版了此書的中文版,名字就叫《編譯原理》。該書出的比較早,大概是在85或86年編寫完成的,作者之一還是著名的貝爾實驗室的科學家。裡面講解的核心編譯原理至今都沒有變過,所以一直到今天,它的價值都非凡。這本書最大的特點就是一開始就通過一個實際的小例子,把編譯原理的大致內容羅列出來,讓很多編譯原理的初學者很快心裡有了個底,也知道為什麼會有這些理論,怎麼運用這些理論。而這一點是我感覺國內的教材缺乏的東西,所以國內的教材都不是寫給願意自學的讀者,總之讓人看了半天,卻不知道裡面的東西有什麼用。第二本書的原名叫《ModernCompilerDesign》,中文名字叫做《現代編譯程序設計》。該書由人民郵電出版社所出。此書比較關注的是編譯原理的實踐,書中給出了不少的實際程序代碼,還有很多實際的編譯技術問題等等。此書另外一個特點就是其現代而字。在傳統的編譯原理教材中,你是不可能看到如同Java中的垃圾回收等演算法的。因為Java這樣的解釋執行語言是在近幾年才流行起來的東西。如果你想深入學習編譯原理的理論知識,那麼你肯定得看前面那本龍書,如果你想自己動手做一個先進的編譯器,那麼你得看這本《現代編譯程序設計》。第三本書就是很多國內的編譯原理學者都推薦的那本《編譯原理及實踐》。或許是這本書引入國內比較早吧,我記得我是在高中就買了這本書,不過也是在前段時間才把整本書看完。此書作為入門教程也的確是個不錯的選擇。書中給出的編譯原理講解也相當細致,雖然不如前面的龍書那麼深入,但是很多地方都是點到為止,作為大學本科教學已經是十分深入了。該書的特點就是注重實踐,不過感覺還不如前面那本《現代編譯程序設計》的實踐味道更重。此書的重點還是在原理上的實踐,而非前面那本那樣的技術實踐。《編譯原理及實踐》在講解編譯原理的各個部分的同時,也在逐步實踐一個現代的編譯器TinyC.等你把整本書看完,差不多自己也可以寫一個TinyC了。作者還對Lex和Yacc這兩個常用的編譯相關的工具進行了很詳細的說明,這一點也是很難在國內的教材中看到的。推薦了這三本教材,都有英文版和中文版的。很多英文好的同學只喜歡看原版的書,不我的感覺是這三本書的翻譯都很不錯,沒有必要特別去買英文版的。理解理論的實質比理解表面的文字更為重要。編譯原理的實質幾乎每本編譯原理的教材都是分成詞法分析,語法分析(LL演算法,遞歸下降演算法,LR演算法),語義分析,運行時環境,中間代碼,代碼生成,代碼優化這些部分。其實現在很多編譯原理的教材都是按照85,86出版的那本龍書來安排教學內容的,所以那本龍書的內容格式幾乎成了現在編譯原理教材的定式,包括國內的教材也是如此。一般來說,大學裡面的本科教學是不可能把上面的所有部分都認真講完的,而是比較偏重於前面幾個部分。像代碼優化那部分東西,就像個無底洞一樣,如果要認真講,就是單獨開一個學期的課也不可能講得清楚。所以,一般對於本科生,對詞法分析和語法分析掌握要求就相對要高一點了。詞法分析相對來說比較簡單。可能是詞法分析程序本身實現起來很簡單吧,很多沒有學過編譯原理的人也同樣可以寫出各種各樣的詞法分析程序。不過編譯原理在講解詞法分析的時候,重點把正則表達式和自動機原理加了進來,然後以一種十分標準的方式來講解詞法分析程序的產生。這樣的做法道理很明顯,就是要讓詞法分析從程序上升到理論的地步。語法分析部分就比較麻煩一點了。現在一般有兩種語法分析演算法,LL自頂向下演算法和LR自底向上演算法。LL演算法還好說,到了LR演算法的時候,困難就來了。很多自學編譯原理的都是遇到LR演算法的理解成問題後就放棄了自學。其實這些東西都是只要大家理解就可以了,又不是像詞法分析那樣非得自己寫出來才算真正的會。像LR演算法的語法分析器,一般都是用工具Yacc來生成,實踐中完全沒有比較自己來實現。對於LL演算法中特殊的遞歸下降演算法,因為其實踐十分簡單,那麼就應該要求每個學生都能自己寫。當然,現在也有不少好的LL演算法的語法分析器,不過要是換在非C平台,比如Java,Delphi,你不能運用YACC工具了,那麼你就只有自己來寫語法分析器。等學到詞法分析和語法分析時候,你可能會出現這樣的疑問:詞法分析和語法分析到底有什麼?就從編譯器的角度來講,編譯器需要把程序員寫的源程序轉換成一種方便處理的數據結構(抽象語法樹或語法樹),那麼這個轉換的過程就是通過詞法分析和語法分析的。其實詞法分析並非一開始就被列入編譯器的必備部分,只是我們為了簡化語法分析的過程,就把詞法分析這種繁瑣的工作單獨提取出來,就成了現在的詞法分析部分。除了編譯器部分,在其它地方,詞法分析和語法分析也是有用的。比如我們在DOS,Unix,Linux下輸入命令的時候,程序如何分析你輸入的命令形式,這也是簡單的應用。總之,這兩部分的工作就是把不規則的文本信息轉換成一種比較好分析好處理的數據結構。那麼為什麼編譯原理的教程都最終把要分析的源分析轉換成樹這種數據結構呢?數據結構中有Stack,Line,List這么多數據結構,各自都有各自的特點。但是Tree這種結構有很強的遞歸性,也就是說我們可以把Tree的任何結點Node提取出來後,它依舊是一顆完整的Tree。這一點符合我們現在編譯原理分析的形式語言,比如我們在函數裡面使用函樹,循環中使用循環,條件中使用條件等等,那麼就可以很直觀地表示在Tree這種數據結構上。同樣,我們在執行形式語言的程序的時候也是如此的遞歸性。在編譯原理後面的代碼生成的部分,就會介紹一種堆棧式的中間代碼,我們可以根據分析出來的抽象語法樹,很容易,很機械地運用遞歸遍歷抽象語法樹就可以生成這種指令代碼。而這種代碼其實也被廣泛運用在其它的解釋型語言中。像現在流行的Java,.NET,其底層的位元組碼bytecode,可以說就是這中基於堆棧的指令代碼的。關於語義分析,語法制導翻譯,類型檢查等等部分,其實都是一種完善前面得到的抽象語法樹的過程。比如說,我們寫C語言程序的時候,都知道,如果把一個浮點數直接賦值給一個整數,就會出現類型不匹配,那麼C語言的編譯器是怎麼知道的呢?就是通過這一步的類型檢查。像C++語言這中支持多態函數的語言,這部分要處理的問題就更復雜了。大部編譯原理的教材在這部分都是講解一些比較好的處理策略而已。因為新的問題總是在發生,舊的法不見得足夠解決。本來說,作為一個編譯器,起作用的部分就是用戶輸入的源程序到最終的代碼生成。但是在講解最終代碼生成的時候,又不得不講解機器運行環境等內容。因為如果你不知道機器是怎麼執行最終代碼的,那麼你當然無法知道如何生成合適的最終代碼。這部分內容我自我感覺其意義甚至超過了編譯原理本身。因為它會把一個計算機的程序的運行過程都通通排在你面前,你將來可能不會從事編譯器的開發工作,但是只要是和計算機軟體開發相關的領域,都會涉及到程序的執行過程。運行時環境的講解會讓你更清楚一個計算機程序是怎麼存儲,怎麼裝載,怎麼執行的。關於部分的內容,我強烈建議大家看看龍書上的講解,作者從最基本的存儲組織,存儲分配策略,非局部名字的訪問,參數傳遞,符號表到動態存儲分配(malloc,new)都作了十分詳細的說明。這些東西都是我們編寫平常程序的時候經常要做的事情,但是我們卻少去探求其內部是如何完成。關於中間代碼生成,代碼生成,代碼優化部分的內容就實在不好說了。國內很多教材到了這部分都會很簡單地走馬觀花講過去,學生聽了也只是作為了解,不知道如何運用。不過這部分內容的東西如果要認真講,單獨開一學期的課程都講不完。在《編譯原理及實踐》的書上,對於這部分的講解就恰到好處。作者主要講解的還是一種以堆棧為基礎的指令代碼,十分通俗易懂,讓人看了後,很容易模仿,自己下來後就可以寫自己的代碼生成。當然,對於其它代碼生成技術,代碼優化技術的講解就十分簡單了。如果要仔細研究代碼生成技術,其實另外還有本叫做《》,那本書現在由機械工業出版社引進的,十分厚重,而且是英文原版。不過這本書我沒有把它列為推薦書給大家,畢竟能把龍書的內容搞清楚,在中國已經就算很不錯的高手了,到那個時候再看這本《》也不遲。代碼優化部分在大學本科教學中還是一個不太重要的部分,就是算是實踐過程中,相信大家也不太運用得到。畢竟,自己做的編譯器能正確生成執行代碼已經很不錯了,還談什麼優化呢?編譯原理的課程畢竟還只是講解原理的課程,不是專門的編譯技術課程。這兩門課程是有很大的區別的。編譯技術更關注實際的編寫編譯器過程中運用到的技術,而原理的課

Ⅳ 編譯原理詞法分析程序

(一)Block子程序分析

procere enter(k: object1); //填寫符號表
begin {enter object into table}
tx := tx + 1; //下標加1,tx的初始值為零,零下標不地址不填寫標志符,用於查找失敗使用
with table[tx] do //填入內容,保存標志符名和類型
begin name := id; kind := k;
case k of //根據類型判斷是否正確
constant: begin if num > amax then //如果是常量,判斷是否大於最大值,若是則報30號錯
begin error(30); num :=0 end;
val := num //否則保存數值
end;
varible: begin level := lev; adr := dx; dx := dx + 1; //如果是變數,填寫變數內部表示,LEVEl是變數的層次,adr為地址
end;
proc: level := lev //如果是過程,保存過程的層次
end
end
end {enter};

//查找符號表的位置
function position(id: alfa): integer;
var i: integer;
begin {find indentifier id in table} //從後向前查找
table[0].name := id; i := tx; //找到保存類型
while table[i].name <> id do i := i-1;
position := i //返回標志符在符號表中的位置
end {position};

procere block(lev,tx: integer; fsys: symset);
var dx: integer; {data allocation index} //數據分配索引
tx0: integer; {initial table index} //初始符號表索引
cx0: integer; {initial code index} //初始代碼索引
procere enter(k: object1); //填寫符號表,下次分析
begin {enter object into table}
tx := tx + 1;
with table[tx] do
begin name := id; kind := k;
case k of
constant: begin if num > amax then
begin error(30); num :=0 end;
val := num
end;
varible: begin level := lev; adr := dx; dx := dx + 1;
end;
proc: level := lev
end
end
end {enter};

function position(id: alfa): integer; //查找符號表,下次分析
var i: integer;
begin {find indentifier id in table}
table[0].name := id; i := tx;
while table[i].name <> id do i := i-1;
position := i
end {position};

procere constdeclaration; //常量聲明
begin if sym = ident then //如果是標志符,讀入一個TOKEN
begin getsym;
if sym in [eql, becomes] then //讀入的是等號或符值號繼續判斷
begin if sym = becomes then error(1); //如果是「=」報1號錯
getsym; //讀入下一個TOKEN
if sym = number then //讀入的是數字,填寫符號表
begin enter(constant); getsym
end
else error(2) //如果不是數字,報2號錯
end else error(3) //不是等號或符值號,報3號錯
end else error(4) //如果不是標志符,報4號錯
end {constdeclaration};

procere vardeclaration; //變數聲明
begin if sym = ident then //讀入的是標志符,填寫符號表
begin enter(varible); getsym
end else error(4) //不是標志符,報4號錯
end {vardeclaration};

procere listcode;
var i: integer;
begin {list code generated for this block}
for i := cx0 to cx-1 do
with code[i] do
writeln(i:5, mnemonic[f]:5, 1:3, a:5)
end {listcode};

procere statement(fsys: symset);
var i, cx1, cx2: integer;
procere expression(fsys: symset); //表達式分析
var addop: symbol;
procere term(fsys: symset); //項分析
var mulop: symbol;
procere factor(fsys: symset); //因子分析
var i: integer;
begin test(facbegsys, fsys, 24); //讀入的是「(」,標志符或數字
while sym in facbegsys do
begin
if sym = ident then //是標志符,查表
begin i:= position(id);
if i = 0 then error(11) else //未找到,報11號錯
with table[i] do //找到,讀入標志符類型
case kind of
constant: gen(lit, 0, val); //寫常量命令
varible: gen(lod, lev-level, adr);//寫變數命令
proc: error(21) //過程名,報21號錯
end;
getsym //讀入下一個TOKEN
end else
if sym = number then //讀入的是數字
begin if num > amax then //如果數字大於最大數,報30號錯誤
begin error(30); num := 0
end;
gen(lit, 0, num); getsym //調用數字命令,讀入下一個TOKEN
end else
if sym = lparen then //讀入的是「(」
begin getsym; expression([rparen]+fsys); //調用表達式分析函數
if sym = rparen then getsym else error(22) //如果「(」後無「)」,報22號錯
end;
test(fsys, [lparen], 23)
end
end {factor};//因子分析結束

//項分析
begin {term} factor(fsys+[times, slash]); //調用因子分析程序
while sym in [times, slash] do //取得是乘、除號循環
begin mulop:=sym;getsym;factor(fsys+[times,slash]); //記錄符號,調用因子分析
if mulop=times then gen(opr,0,4) else gen(opr,0,5) //寫乘除指令
end
end {term};
begin {expression}
if sym in [plus, minus] then //如果是加減號
begin addop := sym; getsym; term(fsys+[plus,minus]); //記錄符號,調用項分析程序
if addop = minus then gen(opr, 0,1) //寫加減指令
end else term(fsys+[plus, minus]);
while sym in [plus, minus] do //如果是加減號循環
begin addop := sym; getsym; term(fsys+[plus,minus]);
if addop=plus then gen(opr,0,2) else gen(opr,0,3)
end
end {expression};

//條件過程
procere condition(fsys: symset);
var relop: symbol;
begin
if sym = oddsym then //如果是判奇符
begin getsym; expression(fsys); gen(opr, 0, 6) //取下一個TOKEN,調用expression,填指令
end else
begin expression([eql, neq, lss, gtr, leq, geq]+fsys);
if not(sym in [eql, neq, lss, leq, gtr, geq]) then //如果不是取到邏輯判斷符號,出錯.20
error(20) else
begin relop := sym; getsym; expression(fsys);
case relop of
eql: gen(opr, 0, 8); // =,相等
neq: gen(opr, 0, 9); // #,不相等
lss: gen(opr, 0, 10); // <,小於
geq: gen(opr, 0, 11); // ],大於等於
gtr: gen(opr, 0, 12); // >,大於
leq: gen(opr, 0, 13); // [,小於等於
end
end
end
end {condition};

begin {statement}
if sym = ident then //如果是標識符
begin i := position(id); //查找符號表
if i = 0 then error(11) else //未找到,標識符未定義,報11號錯
if table[i].kind <> varible then //如果標識符不是變數,報12號錯
begin {assignment to non-varible} error(12); i := 0
end;
getsym; if sym = becomes then getsym else error(13); //如果是變數讀入下一個TOKEN,不是賦值號,報13好錯;是則讀入一個TOKEN
expression(fsys); //調用表達是過程
if i <> 0 then //寫指令
with table[i] do gen(sto, lev-level, adr)
end else
if sym = callsym then //如果是過程調用保留字,讀入下一個TOKEN
begin getsym;
if sym <> ident then error(14) else //不是標識符報14號錯
begin i := position(id);
if i = 0 then error(11) else //是標識符,未定義,報13號錯
with table[i] do // 已定義的標識符讀入類型
if kind=proc then gen(cal, lev-level, adr) //是過程名寫指令
else error(15); //不是過程名,報15號錯
getsym
end
end else
if sym = ifsym then //如果是IF
begin getsym; condition([thensym, dosym]+fsys); //讀入一個TOKEN,調用條件判斷過程
if sym = thensym then getsym else error(16); //如果是THEN,讀入一個TOKEN,不是,報16號錯
cx1 := cx; gen(jpc, 0, 0); //寫指令
statement(fsys); code[cx1].a := cx
end else
if sym = beginsym then //如果是BEGIN
begin getsym; statement([semicolon, endsym]+fsys); //讀入一個TOKEN
while sym in [semicolon]+statbegsys do
begin
if sym = semicolon then getsym else error(10); //如果讀入的是分號
statement([semicolon, endsym]+fsys)
end;
if sym = endsym then getsym else error(17) //如果是END 讀入一個TOKEN,不是,報17號錯
end else
if sym = whilesym then //如果是WHILE
begin cx1 := cx; getsym; condition([dosym]+fsys); //調用條件過程
cx2 := cx; gen(jpc, 0, 0); //寫指令
if sym = dosym then getsym else error(18); //如果是DO讀入下一個TOKEN,不是報18號錯
statement(fsys); gen(jmp, 0, cx1); code[cx2].a := cx
end;
test(fsys, [], 19)
end {statement};

begin {block}
dx:=3;
tx0:=tx;
table[tx].adr:=cx;
gen(jmp,0,0);
if lev > levmax then error(32);
repeat
if sym = constsym then //如果是CONST
begin getsym; //讀入TOKEN
repeat constdeclaration; //常量聲明
while sym = comma do
begin getsym; constdeclaration
end;
if sym = semicolon then getsym else error(5) //如果是分號讀入下一個TOKEN,不是報5號錯
until sym <> ident //不是標志符常量聲明結束
end;
if sym = varsym then 如果是VAR
begin getsym; 讀入下一個TOKEN
repeat vardeclaration; //變數聲明
while sym = comma do
begin getsym; vardeclaration
end;
if sym = semicolon then getsym else error(5) //如果是分號讀入下一個TOKEN,不是報5號錯
until sym <> ident; //不是標志符常量聲明結束
end;
while sym = procsym do //過程聲明
begin getsym;
if sym = ident then
begin enter(proc); getsym
end
else error(4); //不是標志符報4號錯
if sym = semicolon then getsym else error(5); //如果是分號讀入下一個TOKEN,不是報5號錯
block(lev+1, tx, [semicolon]+fsys);
if sym = semicolon then //如果是分號,取下一個TOKEN,不是報5號錯
begin getsym;test(statbegsys+[ident,procsym],fsys,6)
end
else error(5)
end;
test(statbegsys+[ident], declbegsys, 7)
until not(sym in declbegsys); //取到的不是const var proc結束
code[table[tx0].adr].a := cx;
with table[tx0] do
begin adr := cx; {start adr of code}
end;
cx0 := 0{cx}; gen(int, 0, dx);
statement([semicolon, endsym]+fsys);
gen(opr, 0, 0); {return}
test(fsys, [], 8);
listcode;
end {block};

Ⅳ 急求c++符號表~~~~!!!!!!!!!!!!!!

是這個不?

優先順序 運算符 名稱或含義 使用形式 結合方向
1 [] 數組下標 數組名[常量表達式] 左到右
() 圓括弧 (表達式)/ 函數名(形參表)
. 成員選擇(對象) 對象.成員名
-> 成員選擇(指針) 對象指針->成員名
2 - 負號運算符 -表達式 右到左
(類型) 強制類型轉換 (數據類型)表達式
++ 自增運算符 ++變數名/變數名++
-- 自減運算符 --變數名/變數名--
* 取值運算符 *指針變數
& 取地址運算符 &變數名
! 邏輯非運算符 !表達式
~ 按位取反運算符 ~表達式
sizeof 長度運算符 sizeof(表達式)
3 / 除 表達式/表達式 左到右
* 乘 表達式*表達式
% 余數(取模) 整型表達式/整型表達式
4 + 加 表達式+表達式 左到右
- 減 表達式-表達式
5 << 左移 變數<<表達式 左到右
>> 右移 變數>>表達式
6 > 大於 表達式>表達式 左到右
>= 大於等於 表達式>=表達式
< 小於 表達式<表達式
<= 小於等於 表達式<=表達式
7 == 等於 表達式==表達式 左到右
!= 不等於 表達式!= 表達式
8 & 按位與 表達式&表達式 左到右
9 ^ 按位異或 表達式^表達式 左到右
10 | 按位或 表達式|表達式 左到右
11 && 邏輯與 表達式&&表達式 左到右
12 || 邏輯或 表達式||表達式 左到右
13 ?: 條件運算符 表達式1? 表達式2: 表達式3 右到左
14 = 賦值運算符 變數=表達式 右到左
/= 除後賦值 變數/=表達式
*= 乘後賦值 變數*=表達式
%= 取模後賦值 變數%=表達式
+= 加後賦值 變數+=表達式
-= 減後賦值 變數-=表達式
<<= 左移後賦值 變數<<=表達式
>>= 右移後賦值 變數>>=表達式
&= 按位與後賦值 變數&=表達式
^= 按位異或後賦值 變數^=表達式
|= 按位或後賦值 變數|=表達式
15 , 逗號運算符 表達式,表達式,… 左到右
說明:
同一優先順序的運算符,運算次序由結合方向所決定。
簡單記就是:! > 算術運算符 > 關系運算符 > && > || > 賦值運算符

Ⅵ 陳火旺編譯原理什麼是符號表 符號表有哪些重要作用

符號表在編譯程序工作的過程中需要不斷收集、記錄和使用源程序中一些語法符號的類型和特徵等相關信息。這些信息一般以表格形式存儲於系統中。如常數表、變數名表、數組名表、過程名表、標號表等等,統稱為符號表。對於符號表組織、構造和管理方...

Ⅶ 編譯原理中pl/0符號表中oddsym是代表什麼符號


判斷一個表達式的結果是否為奇數,若為奇數返回真

Ⅷ 編譯原理全部的名詞解釋

書上有別那麼懶!。。。。
編譯過程的六個階段:詞法分析,語法分析,語義分析,中間代碼生成,代碼優化,目標代碼生成
解釋程序:把某種語言的源程序轉換成等價的另一種語言程序——目標語言程序,然後再執行目標程序。解釋方式是接受某高級語言的一個語句輸入,進行解釋並控制計算機執行,馬上得到這句的執行結果,然後再接受下一句。
編譯程序:就是指這樣一種程序,通過它能夠將用高級語言編寫的源程序轉換成與之在邏輯上等價的低級語言形式的目標程序(機器語言程序或匯編語言程序)。
解釋程序和編譯程序的根本區別:是否生成目標代碼
句子的二義性(這里的二義性是指語法結構上的。):文法G[S]的一個句子如果能找到兩種不同的最左推導(或最右推導),或者存在兩棵不同的語法樹,則稱這個句子是二義性的。
文法的二義性:一個文法如果包含二義性的句子,則這個文法是二義文法,否則是無二義文法。
LL(1)的含義:(LL(1)文法是無二義的; LL(1)文法不含左遞歸)
第1個L:從左到右掃描輸入串 第2個L:生成的是最左推導
1 :向右看1個輸入符號便可決定選擇哪個產生式
某些非LL(1)文法到LL(1)文法的等價變換: 1. 提取公因子 2. 消除左遞歸
文法符號的屬性:單詞的含義,即與文法符號相關的一些信息。如,類型、值、存儲地址等。
一個屬性文法(attribute grammar)是一個三元組A=(G, V, F)
G:上下文無關文法。
V:屬性的有窮集。每個屬性與文法的一個終結符或非終結符相連。屬性與變數一樣,可以進行計算和傳遞。
F:關於屬性的斷言或謂詞(一組屬性的計算規則)的有窮集。斷言或語義規則與一個產生式相聯,只引用該產生式左端或右端的終結符或非終結符相聯的屬性。
綜合屬性:若產生式左部的單非終結符A的屬性值由右部各非終結符的屬性值決定,則A的屬性稱為綜合屬
繼承屬性:若產生式右部符號B的屬性值是根據左部非終結符的屬性值或者右部其它符號的屬性值決定的,則B的屬性為繼承屬性。
(1)非終結符既可有綜合屬性也可有繼承屬性,但文法開始符號沒有繼承屬性。
(2) 終結符只有綜合屬性,沒有繼承屬性,它們由詞法程序提供。
在計算時: 綜合屬性沿屬性語法樹向上傳遞;繼承屬性沿屬性語法樹向下傳遞。
語法制導翻譯:是指在語法分析過程中,完成附加在所使用的產生式上的語義規則描述的動作。
語法制導翻譯實現:對單詞符號串進行語法分析,構造語法分析樹,然後根據需要構造屬性依賴圖,遍歷語法樹並在語法樹的各結點處按語義規則進行計算。
中間代碼(中間語言)
1、是復雜性介於源程序語言和機器語言的一種表示形式。
2、一般,快速編譯程序直接生成目標代碼。
3、為了使編譯程序結構在邏輯上更為簡單明確,常採用中間代碼,這樣可以將與機器相關的某些實現細節置於代碼生成階段仔細處理,並且可以在中間代碼一級進行優化工作,使得代碼優化比較容易實現。
何謂中間代碼:源程序的一種內部表示,不依賴目標機的結構,易於代碼的機械生成。
為何要轉換成中間代碼:(1)邏輯結構清楚;利於不同目標機上實現同一種語言。
(2)便於移植,便於修改,便於進行與機器無關的優化。
中間代碼的幾種形式:逆波蘭記號 ,三元式和樹形表示 ,四元式
符號表的一般形式:一張符號表的的組成包括兩項,即名字欄和信息欄。
信息欄包含許多子欄和標志位,用來記錄相應名字和種種不同屬性,名字欄也稱主欄。主欄的內容稱為關鍵字(key word)。
符號表的功能:(1)收集符號屬性 (2) 上下文語義的合法性檢查的依據: 檢查標識符屬性在上下文中的一致性和合法性。(3)作為目標代碼生成階段地址分配的依據
符號的主要屬性及作用:
1. 符號名 2. 符號的類型 (整型、實型、字元串型等))3. 符號的存儲類別(公共、私有)
4. 符號的作用域及可視性 (全局、局部) 5. 符號變數的存儲分配信息 (靜態存儲區、動態存儲區)
存儲分配方案策略:靜態存儲分配;動態存儲分配:棧式、 堆式。
靜態存儲分配
1、基本策略
在編譯時就安排好目標程序運行時的全部數據空間,並能確定每個數據項的單元地址。
2、適用的分配對象:子程序的目標代碼段;全局數據目標(全局變數)
3、靜態存儲分配的要求:不允許遞歸調用,不含有可變數組。
FORTRAN程序是段結構,不允許遞歸,數據名大小、性質固定。 是典型的靜態分配
動態存儲分配
1、如果一個程序設計語言允許遞歸過程、可變數組或允許用戶自由申請和釋放空間,那麼,就需要採用動態存儲管理技術。
2、兩種動態存儲分配方式:棧式,堆式
棧式動態存儲分配
分配策略:將整個程序的數據空間設計為一個棧。
【例】在具有遞歸結構的語言程序中,每當調用一個過程時,它所需的數據空間就分配在棧頂,每當過程工作結束時就釋放這部分空間。
過程所需的數據空間包括兩部分
一部分是生存期在本過程這次活動中的數據對象。如局部變數、參數單元、臨時變數等;
另一部分則是用以管理過程活動的記錄信息(連接數據)。
活動記錄(AR)
一個過程的一次執行所需要的信息使用一個連續的存儲區來管理,這個區 (塊)叫做一個活動記錄。
構成
1、臨時工作單元;2、局部變數;3、機器狀態信息;4、存取鏈;
5、控制鏈;6、實參;7、返回地址
什麼是代碼優化
所謂優化,就是對代碼進行等價變換,使得變換後的代碼運行結果與變換前代碼運行結果相同,而運行速度加快或佔用存儲空間減少。
優化原則:等價原則:經過優化後不應改變程序運行的結果。
有效原則:使優化後所產生的目標代碼運行時間較短,佔用的存儲空間較小。
合算原則:以盡可能低的代價取得較好的優化效果。
常見的優化技術
(1) 刪除多餘運算(刪除公共子表達式) (2) 代碼外提 +刪除歸納變數+ (3)強度削弱; (4)變換循環控制條件 (5)合並已知量與復寫傳播 (6)刪除無用賦值
基本塊定義
程序中只有一個入口和一個出口的一段順序執行的語句序列,稱為程序的一個基本塊。

給我分數啊。。。

Ⅸ 編譯原理對符號表進行操作有哪些

//----------------------------符號表---------------------------------------
//預定義
struct snode;
struct stable;
//符號表結點
struct snode
{
string text; //符號名稱
string type; //符號類型
union {int ival;double rval;}value; //值------------
int offset; //偏移量
snode *nextn; //指向下一個節點
stable *header; //指向下屬符號表的表頭
};
//符號表表頭
struct stable
{
stable *previous; //指向先前創建的符號表表頭
snode *firstnode; //指向第一個結點
stable *ifnoelements;//如果此表為空,則用它指向下一個表頭
};

//當前表頭
stable *currtab;
//建立新表,返回表頭指針
//參數:當前的節點的表頭
stable *mktable(stable *previous)
{
stable *newtable =new stable;
newtable->previous=previous;
newtable->ifnoelements=0;
newtable->firstnode=0;
if(previous->firstnode==0)
{
previous->ifnoelements=newtable;
}
else
{
snode* ininode=previous->firstnode;
while(ininode->nextn!=0)
{
ininode=ininode->nextn;
}
ininode->header=newtable;
}

currtab=newtable;
return newtable;
}
//在node指向的符號表中為text建立一個新表項,返回新建立的結點
//參數:node為當前的節點的表頭,text名稱,type類型,offset偏移
snode *enter(stable *table,string text,string type,int offset,double value)
{

//創建節點
snode *newnode = new snode;
newnode->text=text;
newnode->type=type;
newnode->offset=offset;
newnode->nextn=0;
newnode->header=0;
if(type=="int")
{
newnode->value.ival=value;
}
else if(type=="real")
{
newnode->value.rval=value;
}

//判斷此表是否無元素
if(currtab->firstnode==0)
{
currtab->firstnode=newnode;
currtab->ifnoelements=0;
}
else
{
snode* addnode=currtab->firstnode;
while(addnode->nextn!=0)
{
addnode=addnode->nextn;
}
addnode->nextn=newnode;
}

return newnode;
}
//初始化符號表,返回表頭節點
void inittab()
{
stable *initable = new stable;
initable->firstnode=0;
initable->previous=0;
initable->ifnoelements=0;
currtab=initable;
}
//查找指針,表示結果
snode *searchresult;
//查找變數,返回指向該變數的指針
//查找變數,返回指向該變數的指針
snode* search(string name)
{
//檢查表是否空
bool isempty=true;
stable* checktab=currtab;
if(checktab->firstnode!=0)
{isempty=false;}
while(checktab->previous!=0)
{
if(checktab->firstnode!=0)
{isempty=false;}
checktab=checktab->previous;
}
if(checktab->firstnode!=0)
{isempty=false;}
if(isempty)
{
return 0;
}
snode* lastnode;
if(currtab->firstnode==0)
{
//移到非空的表頭
stable* notnullhead=currtab;
while(notnullhead->firstnode==0)
{
notnullhead=notnullhead->previous;
}
snode* tmpnode=notnullhead->firstnode;
//移到最後的元素
while(tmpnode->nextn!=0)
{
tmpnode=tmpnode->nextn;
}
lastnode=tmpnode;
}
else
{
lastnode=currtab->firstnode;
while(lastnode->nextn!=0)
{
lastnode=lastnode->nextn;
}
}
//移到表頭
stable* fronttab=currtab;
while(fronttab->previous!=0)
{
fronttab=fronttab->previous;
}
snode* nownode=0;
while(nownode!=lastnode)
{
while(fronttab->ifnoelements!=0)
{
fronttab=fronttab->ifnoelements;
}
nownode=fronttab->firstnode;
while(nownode->nextn!=0)
{
if(nownode->text==name)
{
searchresult=nownode;
return searchresult;
}
nownode=nownode->nextn;
}
if(nownode->text==name)
{
searchresult=nownode;
return searchresult;
}
fronttab=nownode->header;
}
if(nownode->text==name)
{
searchresult=nownode;
return searchresult;
}
return 0;
}

//消毀符號表
void delNode()
{
//more codes here......
}

閱讀全文

與編譯原理符號表相關的資料

熱點內容
linuxvi下一個 瀏覽:973
安卓手機的應用鎖怎麼解 瀏覽:733
linux增加路徑 瀏覽:845
sql身份證號最後四位加密 瀏覽:533
xp系統表格加密 瀏覽:854
光遇安卓軍大衣什麼時候上線 瀏覽:838
android應用商店圖標 瀏覽:341
java計算圓的面積 瀏覽:643
應用編譯優化recovery 瀏覽:577
域控命令n 瀏覽:258
php導出文件 瀏覽:13
谷歌地圖網頁版無法連接伺服器地址 瀏覽:298
菜鳥工具在線編譯python 瀏覽:858
柵格化命令有何作用 瀏覽:823
為什麼壓縮文件不能解壓 瀏覽:311
足球app哪個軟體好 瀏覽:96
產品經理逼瘋程序員的一天 瀏覽:17
修改svn伺服器ip地址 瀏覽:584
下列關於編譯說法正確的是 瀏覽:246
java馬克思 瀏覽:118