❶ 隨機數演算法
可以把已有數據放到數組里,然後產生隨機下標,根據下標取到的數據可以認為是隨機的。
❷ 隨機演算法、函數
產生整數rand的原理是:
y=ax+b(mod n)其中,n一般是一個很大的素數,幾萬。
a也是大素數。而且a,b,n都是常數。所以rand的產生決定於x,
他被稱為seed。
每一個seed都是上一次產生的y的函數。這樣,如果直接取seed=y的話,
雖然產生的rand之間相關性甚小,但只要知道某個y,就能推知以後的rand。
為避免這種情況,一般取seed為y和當時計算機的時間的函數,如seed=y+t
❸ 隨機演算法的內容簡介
本書是斯坦福一劍橋項目(Stanford-Cambridge Program)之一。
對於許多應用,隨機演算法是最簡單可行的,或者是最快的,或者兩者兼得。本書由該領域兩位著名專家寫成,給出了隨機演算法設計和分析的基本概念,適用於接近研究生開始階段的水平。
本書的第一部分介紹了概率論的基本工具,以及在演算法應用中經常使用的概率分析。為了說明每個工具的作用,在具體設置給出了一些演算法示例。本書的第二部分為演算法的應用,共包括七章,每一章集中在隨機演算法應用的一個重要領域,如數據結構、幾何演算法、圖演算法、數論、計數、並行演算法及在線演算法等。對於每個領域中的演算法,做了全面並且具有代表性的選擇。
盡管本書基本按照教材寫成,也可作為一本有價值的參考書供專業人員和研究者使用。
❹ 隨機數常用演算法有哪些
我所知道的是用移位的辦法做到的,被移位的數稱為種子。
❺ 什麼是偽隨機演算法
所有的演算法都是偽隨機演算法,演算法不可能真正實現隨機,隨機只有吹乒乓這樣、擲硬幣這樣的機器來做。
❻ 隨機演算法
一般用a=rand(n),為了防止重復用srand(time(NULL)); 很簡單的
❼ 真的有能產生完全隨機數的演算法嗎
計算機本來就沒辦法實現真正的隨機,它本來就是按邏輯來運行的,產生的所謂隨機數全部都是偽隨機,最多隻能做到范圍足夠大,產生規律足夠復雜,感覺像是隨機而已。
❽ 隨機演算法的基本概念
隨機演算法是演算法本身包含了隨機數生成器的演算法。根據《演算法導論(中文第二版)》描述,在進行演算法分析的時,有時可以在獲得了一定輸入分布信息之後對輸入的分布進行一定的假定,在此基礎上進行平均情況分析得到演算法的時間復雜度。然而有時候無法獲得輸入分布的信息,這時可以在演算法本身增加一定的隨機性,繼而實現對演算法進行平均情況分析。通過設計隨機演算法有效地避免較多的較壞情況輸入的出現,從而提高演算法的平均情況下的性能。
❾ 隨機數演算法是什麼
在計算機中並沒有一個真正的隨機數發生器,但是可以做到使產生的數字重復率很低,這樣看起來好象是真正的隨機數,實現這一功能的程序叫偽隨機數發生器。有關如何產生隨機數的理論有許多如果要詳細地討論,需要厚厚的一本書的篇幅。不管用什麼方法實現隨機數發生器,都必須給它提供一個名為「種子」的初始值。而且這個值最好是隨機的,或者至少這個值是偽隨機的。「種子」的值通常是用快速計數寄存器或移位寄存器來生成的。下面講一講在C語言里所提供的隨機數發生器的用法。現在的C編譯器都提供了一個基於ANSI標準的偽隨機數發生器函數,用來生成隨機數。它們就是rand()和srand()函數。這二個函數的工作過程如下:」)首先給srand()提供一個種子,它是一個unsignedint類型,其取值范圍從0~65535;2)然後調用rand(),它會根據提供給srand()的種子值返回一個隨機數(在0到32767之間)3)根據需要多次調用rand(),從而不間斷地得到新的隨機數;4)無論什麼時候,都可以給srand()提供一個新的種子,從而進一步「隨機化」rand()的輸出結果。這個過程看起來很簡單,問題是如果你每次調用srand()時都提供相同的種子值,那麼,你將會得到相同的隨機數序列,這時看到的現象是沒有隨機數,而每一次的數都是一樣的了。例如,在以17為種子值調用srand()之後,在首次調用rand()時,得到隨機數94。在第二次和第三次調用rand()時將分別得到26602和30017,這些數看上去是很隨機的(盡管這只是一個很小的數據點集合),但是,在你再次以17為種子值調用srand()後,在對於rand()的前三次調用中,所得的返回值仍然是在對94,26602,30017,並且此後得到的返回值仍然是在對rand()的第一批調用中所得到的其餘的返回值。因此只有再次給srand()提供一個隨機的種子值,才能再次得到一個隨機數。下面的例子用一種簡單而有效的方法來產生一個相當隨機的「種子」值----當天的時間值:g#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌椋錚瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌歟椋猓瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦穡澹螅瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦椋恚澹猓瑁Γ紓簦弧。觶錚椋洹。恚幔椋睿ǎ觶錚椋洌。。椋睿簟。椋弧。醯睿螅椋紓睿澹洹。椋睿簟。螅澹澹洌鄭幔歟弧。螅簦潁醯悖簟。簦椋恚澹狻。簦椋恚澹攏醯媯弧。媯簦椋恚澹ǎΓ幔恚穡唬簦椋恚澹攏醯媯弧。螅澹澹洌鄭幔歟劍ǎǎǎǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯簦椋恚澹Γ幔恚穡唬埃疲疲疲疲。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚蕖。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚弧。螅潁幔睿洌ǎǎ醯睿螅椋紓睿澹洹。椋睿簦螅澹澹洌鄭幔歟弧。媯錚潁ǎ椋劍埃唬椋Γ歟簦唬保埃唬椋。穡潁椋睿簦媯ǎΓ瘢醯錚簦唬ィ叮洌Γ#梗玻唬睿Γ瘢醯錚簦籦egjrand());}上面的程序先是調用_ftime()來檢查當前時間yc並把它的值存入結構成員timeBuf.time中wae當前時間的值從1970年1月1日開始以秒計算aeh在調用了_ftime()之後在結構timeBuf的成員millitm中還存入了當前那一秒已經度過的毫秒數,但在DOS中這個數字實際上是以百分之一秒來計算的。然後,把毫秒數和秒數相加,再和毫秒數進行異或運算。當然也可以對這兩個結構成員進行更多的計算,以控制se......餘下全文>>
❿ 求隨機數常用演算法
一般隨機數都不是完全隨機的,你在一個程序里兩次調用系統的隨機函數,你會發現是一樣的!
給你個思路,用系統函數得到當前進程的開始時間,然後處理這個時間,演算法想怎麼寫就怎麼寫,因為每次程序運行時間的不一樣的,所以得到的隨機數就「隨機」了,很多隨機函數都是這么做的!