A. 在matlab中做模糊C均值聚類(fcm)演算法如何體現初始隸屬度
它的程序裡面是用rand函數隨機初始化了一個矩陣N*c,然後對這個隨機矩陣進行歸一化,即滿足一行(也可能是列記不清楚了),反正是讓它滿足隸屬度的每個樣本屬於所有類隸屬度為1的條件。用這個矩陣進行初始化,計算新的中心 新的隸屬度 新的中心。。。。 知道滿足閾值。matlab裡面自己有函數一招就能找到
B. MATLAB基於模糊聚類分析方法
function Z=hecheng(X,X)
[m,m]=size(X);z=zeros(m,m);p4=zeros(1,m);
for i=1:m
for j=1:m
for k=1:m
p4(1,k)=min(X(i,k),Y(k,j));
end
Z(i,j)=max(p4);
end
end
應該能用!
C. k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別
k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則;
模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本根據是「類內加權誤差平方和最小化」准則;
這兩個方法都是迭代求取最終的聚類劃分,即聚類中心與隸屬度值。兩者都不能保證找到問題的最優解,都有可能收斂到局部極值,模糊c均值甚至可能是鞍點。
至於c均值似乎沒有這么叫的,至少從我看到文獻來看是沒有。不必糾結於名稱。如果你看的是某本模式識別的書,可能它想表達的意思就是k均值。
實際上k-means這個單詞最先是好像在1965年的一篇文獻提出來的,後來很多人把這種聚類叫做k均值。但是實際上十多年前就有了類似的演算法,但是名字不一樣,k均值的歷史相當的復雜,在若干不同的領域都被單獨提出。追尋演算法的名稱與歷史沒什麼意義,明白具體的實現方法就好了。
D. 在matlab里怎樣對散點圖做模糊C均值聚類,和模糊聚類
加上下面這些就行,過去吧;我運行過了
%%%%%%%%%%%%%%%%%%%%
data = [x',y'];
c =2; % 聚類個數
[center,U,obj_fcn] = fcm(data, c);
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
figure,hold on;
plot(data(index1,1),data(index1, 2),'r.');
plot(data(index2,1),data(index2, 2),'g.');
plot(center(1,1),center(1,2),'b+');
plot(center(2,1),center(2,2),'b+');
E. 模糊c均值演算法matlab程序
function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 採用模糊C均值對數據集data聚為cluster_n類
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 輸入:
% data ---- nxm矩陣,表示n個樣本,每個樣本具有m的維特徵值
% N_cluster ---- 標量,表示聚合中心數目,即類別數
% options ---- 4x1矩陣,其中
% options(1): 隸屬度矩陣U的指數,>1 (預設值: 2.0)
% options(2): 最大迭代次數 (預設值: 100)
% options(3): 隸屬度最小變化量,迭代終止條件 (預設值: 1e-5)
% options(4): 每次迭代是否輸出信息標志 (預設值: 1)
% 輸出:
% center ---- 聚類中心
% U ---- 隸屬度矩陣
% obj_fcn ---- 目標函數值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;
if nargin ~= 2 & nargin ~= 3, %判斷輸入參數個數只能是2個或3個
error('Too many or too few input arguments!');
end
data_n = size(data, 1); % 求出data的第一維(rows)數,即樣本個數
in_n = size(data, 2); % 求出data的第二維(columns)數,即特徵值長度
% 默認操作參數
default_options = [2; % 隸屬度矩陣U的指數
100; % 最大迭代次數
1e-5; % 隸屬度最小變化量,迭代終止條件
1]; % 每次迭代是否輸出信息標志
if nargin == 2,
options = default_options;
else %分析有options做參數時候的情況
% 如果輸入參數個數是二那麼就調用默認的option;
if length(options) < 4, %如果用戶給的opition數少於4個那麼其他用默認值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是數的值為0(如NaN),不是數時為1
nan_index = find(isnan(options)==1);
%將denfault_options中對應位置的參數賦值給options中不是數的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩陣的指數小於等於1
error('The exponent should be greater than 1!');
end
end
%將options 中的分量分別賦值給四個變數;
expo = options(1); % 隸屬度矩陣U的指數
max_iter = options(2); % 最大迭代次數
min_impro = options(3); % 隸屬度最小變化量,迭代終止條件
display = options(4); % 每次迭代是否輸出信息標志
obj_fcn = zeros(max_iter, 1); % 初始化輸出參數obj_fcn
U = initfcm(cluster_n, data_n); % 初始化模糊分配矩陣,使U滿足列上相加為1,
% Main loop 主要循環
for i = 1:max_iter,
%在第k步循環中改變聚類中心ceneter,和分配函數U的隸屬度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 終止條件判別
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end
iter_n = i; % 實際迭代次數
obj_fcn(iter_n+1:max_iter) = [];
% 子函數
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隸屬度函數矩陣
% 輸入:
% cluster_n ---- 聚類中心個數
% data_n ---- 樣本點數
% 輸出:
% U ---- 初始化的隸屬度矩陣
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);
% 子函數
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚類時迭代的一步
% 輸入:
% data ---- nxm矩陣,表示n個樣本,每個樣本具有m的維特徵值
% U ---- 隸屬度矩陣
% cluster_n ---- 標量,表示聚合中心數目,即類別數
% expo ---- 隸屬度矩陣U的指數
% 輸出:
% U_new ---- 迭代計算出的新的隸屬度矩陣
% center ---- 迭代計算出的新的聚類中心
% obj_fcn ---- 目標函數值
mf = U.^expo; % 隸屬度矩陣進行指數運算結果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚類中心(5.4)式
dist = distfcm(center, data); % 計算距離矩陣
obj_fcn = sum(sum((dist.^2).*mf)); % 計算目標函數值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 計算新的隸屬度矩陣 (5.3)式
% 子函數
function out = distfcm(center, data)
% 計算樣本點距離聚類中心的距離
% 輸入:
% center ---- 聚類中心
% data ---- 樣本點
% 輸出:
% out ---- 距離
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 對每一個聚類中心
% 每一次循環求得所有樣本點到一個聚類中心的距離
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end
F. matlab中的功能函數FCM如何使用
模糊C均值聚類演算法,可將輸入的數據集data聚為指定的cluster_n類
【函數描述】
語法格式
[center, U, obj_fcn] = FCM(data, cluster_n, options)
用法:
1. [center,U,obj_fcn] = FCM(Data,N_cluster,options);
2. [center,U,obj_fcn] = FCM(Data,N_cluster);
輸入變數
data ---- n*m矩陣,表示n個樣本,每個樣本具有m維特徵值
cluster_n ---- 標量,表示聚合中心數目,即類別數
options ---- 4*1列向量,其中
options(1): 隸屬度矩陣U的指數,>1(預設值: 2.0)
options(2): 最大迭代次數(預設值: 100)
options(3): 隸屬度最小變化量,迭代終止條件(預設值: 1e-5)
options(4): 每次迭代是否輸出信息標志(預設值: 0)
輸出變數
center ---- 聚類中心
U ---- 隸屬度矩陣
obj_fcn ---- 目標函數值
G. matlab中聚類演算法
聚類分析的概念主要是來自多元統計分析,例如,考慮二維坐標繫上有散落的許多點,這時,需要對散點進行合理的分類,就需要聚類方面的知識。模糊聚類分析方法主要針對的是這樣的問題:對於樣本空間P中的元素含有多個屬性,要求對其中的元素進行合理的分類。最終可以以聚類圖的形式加以呈現,而聚類圖可以以手式和自動生成兩種方式進行,這里採用自動生成方式,亦是本文的程序實現過程中的一個關鍵環節。 這里所實現的基本的模糊聚類的主要過程是一些成文的方法,在此簡述如下: 對於待分類的一個樣本集U=,設其中的每個元素有m項指標,則可以用m維向量描述樣本,即:ui=(i=1,2,...,n)。則其相應的模糊聚類按下列步驟進行:1) 標准化處理,將數據壓縮至(0-1)區間上,這部分內容相對簡單,介紹略。(參[1])2) 建立模糊關系:這里比較重要的環節之一,首先是根據逗距離地或其它進行比較的觀點及方法建立模糊相似矩陣,主要的逗距離地有:Hamming 距離: d(i,j)=sum(abs(x(i,k)-x(j,k))) | k from 1 to m (| k from 1 to m表示求和式中的系數k由1增至m,下同)Euclid 距離: d(i,j)=sum((x(i,k)-x(j,k))^2) | k from 1 to m 非距離方法中,最經典的就是一個夾角餘弦法: 最終進行模糊聚類分析的是要求對一個模糊等價矩陣進行聚類分析,而由相似矩陣變換到等價矩陣,由於相似矩陣已滿足對稱性及自反性,並不一定滿足傳遞性,則變換過程主要進行對相似矩陣進行滿足傳遞性的操作。使關系滿足傳遞性的演算法中,最出名的,就是Washall演算法了,又稱傳遞閉包法(它的思想在最短路的Floyd演算法中亦被使用了)。 演算法相當簡潔明了,復雜度稍大:O(log2(n)*n^3),其實就是把一個方陣的自乘操作,只不過這里用集合操作的交和並取代了原先矩陣操作中的*和+操作,如下:(matlab代碼)%--washall enclosure algorithm--%unchanged=0;while unchanged==0 unchanged=1; %--sigma:i=1:n(combine(conj(cArr(i,k),cArr(k,j)))) for i=1:cArrSize for j=1:cArrSize mergeVal=0; for k=1:cArrSize if(cArr(i,k)<=cArr(k,j)&&cArr(i,k)>mergeVal) mergeVal=cArr(i,k); elseif(cArr(i,k)>cArr(k,j)&&cArr(k,j)>mergeVal) mergeVal=cArr(k,j); end end if(mergeVal>cArr(i,j)) CArr(i,j)=mergeVal; unchanged=0; else CArr(i,j)=cArr(i,j); end end end %-- back--% for i=1:cArrSize for j=1:cArrSize cArr(i,j)=CArr(i,j); end endend
H. MATLAB中圖形輪廓提取的C均值聚類演算法FCM出錯,用其他圖片就可以出結果,換成醫學圖片就不行了
醫學圖片的數據結構與一般的圖片不一樣,須專門編程。
I. 遺傳演算法改進的模糊C-均值聚類MATLAB源碼範例
function [BESTX,BESTY,ALLX,ALLY]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函數實現遺傳演算法,用於模糊C-均值聚類
%% 輸入參數列表
% K 迭代次數
% N 種群規模,要求是偶數
% Pm 變異概率
% LB 決策變數的下界,M×1的向量
% UB 決策變數的上界,M×1的向量
% D 原始樣本數據,n×p的矩陣
% c 分類個數
% m 模糊C均值聚類數學模型中的指數
%% 輸出參數列表
% BESTX K×1細胞結構,每一個元素是M×1向量,記錄每一代的最優個體
% BESTY K×1矩陣,記錄每一代的最優個體的評價函數值
% ALLX K×1細胞結構,每一個元素是M×N矩陣,記錄全部個體
% ALLY K×N矩陣,記錄全部個體的評價函數值
%% 第一步:
M=length(LB);%決策變數的個數
%種群初始化,每一列是一個樣本
farm=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
farm(i,:)=x;
end
%輸出變數初始化
ALLX=cell(K,1);%細胞結構,每一個元素是M×N矩陣,記錄每一代的個體
ALLY=zeros(K,N);%K×N矩陣,記錄每一代評價函數值
BESTX=cell(K,1);%細胞結構,每一個元素是M×1向量,記錄每一代的最優個體
BESTY=zeros(K,1);%K×1矩陣,記錄每一代的最優個體的評價函數值
k=1;%迭代計數器初始化
%% 第二步:迭代過程
while k<=K
%% 以下是交叉過程
newfarm=zeros(M,2*N);
Ser=randperm(N);%兩兩隨機配對的配對表
A=farm(:,Ser(1));
B=farm(:,Ser(2));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];%產生子代a
b=[B(1:P0,:);A((P0+1):end,:)];%產生子代b
newfarm(:,2*N-1)=a;%加入子代種群
newfarm(:,2*N)=b;???
for i=1:(N-1)
A=farm(:,Ser(i));
B=farm(:,Ser(i+1));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];
b=[B(1:P0,:);A((P0+1):end,:)];
newfarm(:,2*i-1)=a;
newfarm(:,2*i)=b;
end
FARM=[farm,newfarm];
%% 選擇復制
SER=randperm(3*N);
FITNESS=zeros(1,3*N);
fitness=zeros(1,N);
for i=1:(3*N)
Beta=FARM(:,i);
FITNESS(i)=FIT(Beta,D,c,m);
end
for i=1:N
f1=FITNESS(SER(3*i-2));
f2=FITNESS(SER(3*i-1));
f3=FITNESS(SER(3*i));
if f1<=f2&&f1<=f3
farm(:,i)=FARM(:,SER(3*i-2));
fitness(:,i)=FITNESS(:,SER(3*i-2));
elseif f2<=f1&&f2<=f3
farm(:,i)=FARM(:,SER(3*i-1));
fitness(:,i)=FITNESS(:,SER(3*i-1));
else
farm(:,i)=FARM(:,SER(3*i));
fitness(:,i)=FITNESS(:,SER(3*i));
end
end
%% 記錄最佳個體和收斂曲線
X=farm;
Y=fitness;
ALLX{k}=X;
ALLY(k,:)=Y;
minY=min(Y);
pos=find(Y==minY);
BESTX{k}=X(:,pos(1));
BESTY(k)=minY;???
%% 變異
for i=1:N
if Pm>rand&&pos(1)~=i
AA=farm(:,i);
BB=GaussMutation(AA,LB,UB);
farm(:,i)=BB;
end
end
disp(k);
k=k+1;
end
%% 繪圖
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
ylabel('函數值')
xlabel('迭代次數')
grid on
忘記寫了,這個是源代碼!謝謝謝謝!