導航:首頁 > 源碼編譯 > python協同過濾演算法

python協同過濾演算法

發布時間:2022-10-31 02:48:22

python實現協同過濾推薦演算法,用的大一些的數據集就報錯MemoryError

  1. python雖然易用,但是內存佔用比較多;所以如果你有C/C++/Java基礎,考慮用這些語言來實現;

  2. CF演算法需要計算大量的相似度,如果能把中間結果存起來,或者簡化計算過程(如,你可能會重復計算一個item的均值)可以省下不少內存;(個人試過計算1w個用戶Pearson是沒問題的)

  3. 如果內存實在不夠用,那就用時間換空間,把中間計算結果分成小文件存到磁碟上,用的時候再讀取。

    供參考。

⑵ python中有哪些簡單的演算法

首先謝謝邀請,

python中有的演算法還是比較多的?

python之所以火是因為人工智慧的發展,人工智慧的發展離不開演算法!

感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質的。

這本書對於演算法從基本的入門到實現,循序漸進的介紹,比如裡面就涵蓋了數學建模的常用演算法。

第 1章從數學建模到人工智慧

1.1數學建模1.1.1數學建模與人工智慧1.1.2數學建模中的常見問題1.2人工智慧下的數學1.2.1統計量1.2.2矩陣概念及運算1.2.3概率論與數理統計1.2.4高等數學——導數、微分、不定積分、定積分

第2章 Python快速入門

2.1安裝Python2.1.1Python安裝步驟2.1.2IDE的選擇2.2Python基本操作2.2.1第 一個小程序2.2.2注釋與格式化輸出2.2.3列表、元組、字典2.2.4條件語句與循環語句2.2.5break、continue、pass2.3Python高級操作2.3.1lambda2.3.2map2.3.3filter

第3章Python科學計算庫NumPy

3.1NumPy簡介與安裝3.1.1NumPy簡介3.1.2NumPy安裝3.2基本操作3.2.1初識NumPy3.2.2NumPy數組類型3.2.3NumPy創建數組3.2.4索引與切片3.2.5矩陣合並與分割3.2.6矩陣運算與線性代數3.2.7NumPy的廣播機制3.2.8NumPy統計函數3.2.9NumPy排序、搜索3.2.10NumPy數據的保存

第4章常用科學計算模塊快速入門

4.1Pandas科學計算庫4.1.1初識Pandas4.1.2Pandas基本操作4.2Matplotlib可視化圖庫4.2.1初識Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib繪圖案例4.3SciPy科學計算庫4.3.1初識SciPy4.3.2SciPy基本操作4.3.3SciPy圖像處理案例第5章Python網路爬蟲5.1爬蟲基礎5.1.1初識爬蟲5.1.2網路爬蟲的演算法5.2爬蟲入門實戰5.2.1調用API5.2.2爬蟲實戰5.3爬蟲進階—高效率爬蟲5.3.1多進程5.3.2多線程5.3.3協程5.3.4小結

第6章Python數據存儲

6.1關系型資料庫MySQL6.1.1初識MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初識NoSQL6.2.2Python操作MongoDB6.3本章小結6.3.1資料庫基本理論6.3.2資料庫結合6.3.3結束語

第7章Python數據分析

7.1數據獲取7.1.1從鍵盤獲取數據7.1.2文件的讀取與寫入7.1.3Pandas讀寫操作7.2數據分析案例7.2.1普查數據統計分析案例7.2.2小結

第8章自然語言處理

8.1Jieba分詞基礎8.1.1Jieba中文分詞8.1.2Jieba分詞的3種模式8.1.3標注詞性與添加定義詞8.2關鍵詞提取8.2.1TF-IDF關鍵詞提取8.2.2TextRank關鍵詞提取8.3word2vec介紹8.3.1word2vec基礎原理簡介8.3.2word2vec訓練模型8.3.3基於gensim的word2vec實戰

第9章從回歸分析到演算法基礎

9.1回歸分析簡介9.1.1「回歸」一詞的來源9.1.2回歸與相關9.1.3回歸模型的劃分與應用9.2線性回歸分析實戰9.2.1線性回歸的建立與求解9.2.2Python求解回歸模型案例9.2.3檢驗、預測與控制

第10章 從K-Means聚類看演算法調參

10.1K-Means基本概述10.1.1K-Means簡介10.1.2目標函數10.1.3演算法流程10.1.4演算法優缺點分析10.2K-Means實戰

第11章 從決策樹看演算法升級

11.1決策樹基本簡介11.2經典演算法介紹11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系數11.2.5小結11.3決策樹實戰11.3.1決策樹回歸11.3.2決策樹的分類

第12章 從樸素貝葉斯看演算法多變193

12.1樸素貝葉斯簡介12.1.1認識樸素貝葉斯12.1.2樸素貝葉斯分類的工作過程12.1.3樸素貝葉斯演算法的優缺點12.23種樸素貝葉斯實戰

第13章 從推薦系統看演算法場景

13.1推薦系統簡介13.1.1推薦系統的發展13.1.2協同過濾13.2基於文本的推薦13.2.1標簽與知識圖譜推薦案例13.2.2小結

第14章 從TensorFlow開啟深度學習之旅

14.1初識TensorFlow14.1.1什麼是TensorFlow14.1.2安裝TensorFlow14.1.3TensorFlow基本概念與原理14.2TensorFlow數據結構14.2.1階14.2.2形狀14.2.3數據類型14.3生成數據十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成隨機數14.4TensorFlow實戰

希望對你有幫助!!!


貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!

⑶ python有實現協同過濾的庫嗎

本文主要內容為基於用戶偏好的相似性進行物品推薦,使用的數據集為 GroupLens Research 採集的一組從 20 世紀 90 年代末到 21 世紀初由 MovieLens 用戶提供的電影評分數據。數據中包含了約 6000 名用戶對約 4000 部電影的 100萬條評分,五分制。數據包可以從網上下載到,裡麵包含了三個數據表——users、movies、ratings。因為本文的主題是基於用戶偏好的,所以只使用 ratings 這一個文件。另兩個文件里分別包含用戶和電影的元信息。

⑷ python需要學習什麼內容

Python的學習內容還是比較多的,我們將學習的過程劃分為4個階段,每個階段學習對應的內容,具體的學習順序如下:

Python學習順序:

①Python軟體開發基礎

互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,中博軟體學院、南京課工場、南京北大青鳥等開設python專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

⑸ 0基礎學習python怎麼入門呢

該如何學習Python呢?
(1)選擇學習方向。學習Python主要目的是用語言來解決問題,而不是了解這門語言。Python應用方向有很多,Python基礎知識學習完後,應用方向不同需求也不同;雖然Python需要系統化的學習,但是在學習Python的時候,想要告訴大家還是需要提前確定一下自己感興趣的方向,有針對性的學習更為重要。
(2)規劃學習路線。當確定好自己的發展方向之後,下一步就是順著方向去學習,建立好自己的學習路線。要有系統化的學習路線,需要完成什麼樣的目標,需要學習哪些知識,需要懂哪些知識,這樣每次學習一個部分,就可以有實際的結果輸出,結果的輸出才可以鼓勵進行下一步的學習。
(3)合理規劃時間。劃好自己的學習時間,每天進度是什麼,每天學習幾個小時都是需要提前確定的,有計劃有規劃的去學習,堅持下來才會有意外的收獲。
用任何編程語言來開發程序,都是為了讓計算機工作。目前有很多種流行的編程語言,如難學的C語言,普遍的Java語言,適合初學者的Basic語言,適合網頁編程的JavaScript語言等,Python適合初學者的一種計算機程序設計語言。

⑹ 想要自學python,有什麼好的學習方法推薦

人生苦短,我選Python!



最後,一點學習建議:

在學習之前先給自己定一個目標規劃,培養自己對編程的興趣,在學習過程中一定要碰敲代碼,學會做筆記,但不用刻意去記住這些代碼,理解代碼比記住代碼更重要。學會使用搜索引擎的能力,學會自己解決問題,除了這些要多看大牛的技術專欄,通過對比大牛認清自己的現狀並及時做出調整和改變。

學編程是一個長期的過程。所有各位小夥伴一定要有自己的一個長期計劃,並把長期的計劃分解成段目標,目標完成後給自己一定的激勵,一句話,加油就完事兒了。

⑺ 如何自學編程python

首先先了解Python語言的四大發展方向。目前Python的主要方向有web後端開發、大數據分析網路爬蟲和人工智慧,當然如果再細分的話還有自動化測試、運維等方向。

在學習Python的基礎語法時,並不需要太多的基礎,基本只要熟練使用電腦日常功能並對Python感興趣就可以了,但如果想要在人工智慧領域方向發展的話,線性代數、概率、統計等高等數學知識基本是必需的,原因在於這些知識能夠讓你的邏輯更加清晰,在編程過程中有更強的思路。

分享一個千鋒Python的學習大綱給你

第一階段 - Python 數據科學

Python 基礎語法

入門及環境安裝 、基本語法與數據類型、控制語句、錯誤及異常、錯誤處理方法、異常處理方法 、常用內置函數 、函數創建與使用、Python 高級特性、高級函數、Python 模塊、PythonIO 操作 、日期與時間 、類與面向對象 、Python 連接資料庫

Python 數據清洗

數字化 Python 模塊Numpy、數據分析利器Pandas、Pandas 基本操作、Pandas 高級操作

Python 數據可視化

數據可視化基礎、MLlib(RDD-Base API)機器學習、MatPlotlib 繪圖進階、高級繪圖工具

第二階段 - 商業數據可視化

Excel 業務分析

Excel 基礎技能、Excel 公式函數、圖表可視化、人力 & 財務分析案例、商業數據分析方法、商業數據分析報告

Mysql 資料庫

Mysql 基礎操作(一)、Mysql 基礎操作(二)、Mysql 中級操作、Mysql 高級操作、電商數據處理案例

PowerBI

初級商業智能應用 (PowerQuery)、初級商業智能應用 (PowerPivot)、初級商業智能應用案例、存儲過程、PowerBI Desktop 案例、PowerBI Query 案例

統計學基礎

微積分、線性代數基礎、統計基礎

Tableau

Tableau 基本操作、Tableau 繪圖、Tableau 數據分析、Tableau 流量分析

SPSS

客戶畫像、客戶價值模型、神經網路、決策樹、時間序列

第三階段 - Python 機器學習

Python 統計分析

數據准備、一元線性回歸、多元線性回歸、一般 logistic 回歸、ogistic 回歸與修正

Python 機器學習基礎

機器學習入門、KNN 講義、模型評估方法、模型優化方法、Kmeans、DBSCAN、決策樹演算法實戰

Python 機器學習中級

線性回歸、模型優化方法、邏輯回歸、樸素貝葉斯、關聯規則、協同過濾、推薦系統案例

Python 機器學習高級

集成演算法 - 隨機森林、集成演算法 -AdaBoost、數據處理和特徵工程、SVM、神經網路、XGBoost

第四階段 - 項目實戰

電商市場數據挖掘項目實戰

項目背景 & 業務邏輯 、指定分析策略 、方法實現與結果 、營銷活動設計及結果評價 、撰寫數據分析報告

金融風險信用評估項目實戰

項目背景 & 業務邏輯 、建模准備 、數據清洗 、模型訓練 、模型評估 、模型部署與更新

第五階段 - 數據採集

爬蟲類庫解析 、數據解析 、動態網頁提取 、驗證碼、IP 池 、多線程爬蟲 、反爬應對措施 、scrapy 框架

第六階段 - 企業課

團隊戶外拓展訓練 、企業合作項目課程 、管理課程 、溝通表達訓練 、職業素養課程

以上就是零基礎Python學習路線的所有內容,希望對大家的學習有所幫助。

⑻ 基於用戶、基於項目和SVD的協同過濾Python代碼

目前主要有三種度量用戶間相似性的方法,分別是:餘弦相似性、相關相似性以及修正的餘弦相似性。①餘弦相似性(Cosine):用戶一項目評分矩陣可以看作是n維空間上的向量,對於沒有評分的項目將評分值設為0,餘弦相似性度量方法是通過計算向量間的餘弦夾角來度量用戶間相似性的。設向量i和j分別表示用戶i和用戶j在n維空間上的評分,則用基於協同過濾的電子商務個性化推薦演算法研究戶i和用戶j之間的相似性為:②修正的餘弦相似性 (AdjustedCosine):餘弦相似度未考慮到用戶評分尺度問題,如在評分區間[1一5]的情況下,對用戶甲來說評分3以上就是自己喜歡的,而對於用戶乙,評分4以上才是自己喜歡的。通過減去用戶對項的平均評分,修正的餘弦相似性度量方法改善了以上問題。用幾表示用戶i和用戶j共同評分過的項集合,Ii和壽分別表示用戶i和用戶j評分過的項集合,則用戶i和用戶j之間的相似性為:③相關相似性(Correlation)此方法是採用皮爾森(Pearson)相關系數來進行度量。設Iij表示用戶i和用戶j共同評分過的項目集合,則用戶i和用戶j之間相似性為:

⑼ 協同過濾與分類

[TOC]

本文是《寫給程序員的數據挖掘實踐指南》的一周性筆記總結。主要涵蓋了以下內容:

所謂推薦系統就是系統根據你的行為操作為你推薦你可能想要的其他物品。這在電商平台、音樂平台、資訊推送平台等多有見到。而協同過濾簡單來說是利用某興趣相投、擁有共同經驗之群體的喜好來推薦用戶感興趣的信息,個人通過合作的機制給予信息相當程度的回應(如評分)並記錄下來以達到過濾的目的進而幫助別人篩選信息。其推薦基礎是用戶評分。這里可以分為兩種用戶評分,即顯式評分與隱式評分。顯式評分即日常見到的為物品打分,如對喜好音樂評級等;隱式評分是通過對用戶行為的持續性觀察,進而發現用戶偏好的一種方法,如新聞網頁中的推送你經常閱讀過的相關內容等。兩種評分方法都有自己的問題。

總體來說,協同過濾其運作機制也可以分為兩種:

基於用戶的推薦是指通過用戶的行為偏好,劃分相似用戶。在相似用戶群體之間互相推送一方喜歡而另一方未有過的物品。核心在於相似用戶群體的劃分。這種推薦方法有自己的局限:

基於用戶的過濾其核心是用戶群體的劃分,其實也就是分類。

這里的距離函數包括三種:曼哈頓距離和歐氏距離。這里以二維舉例,更多維情況下類推即可。

兩距離函數可以一般化為:

其中,當r=1時,函數為曼哈頓距離;當r=2時,函數為歐氏距離。

演算法實現:

在算出距離函數後,通過比對目標用戶與所有用戶群體的偏好,找到最近鄰的用戶並給予推薦。

基於用戶距離的推薦有一個明顯的問題,就是用戶評分體系的差異。比如評分極端的用戶給喜歡的評最高分,給不喜歡的評最低分;而有些用戶傾向於不出現極端評分。即所謂「分數貶值」( Grade Inflation )問題。這種問題的存在可能讓基於距離的評分產生偏差。皮爾遜相關系數可以緩解這種問題。

原皮爾遜相關系數公式在實際運用的時候會出現多次迭代的問題,影響計算效率,這里給出了近似公式:

皮爾遜相關系數的用戶判斷依據不是單純的用戶距離,而是用戶的評分一致性:取值在[-1, 1]之間,越接近1則表示兩用戶的評分一致性越好;反之則反。
python實現:

基於用戶推薦的過程中,另一個存在的問題就是由於大部分人的喜愛物品集合的交集過少,存在大量計算值為0的feature的情況。即所謂 稀疏性 問題。一個較容易理解的例子是對書本內容的挖掘。餘弦相似度會忽略這種0-0匹配。
餘弦相似度:

python實現:

如此多的評估系數,如何進行抉擇呢?根據數據特徵:

另外值得考慮的一點是,目前為止的推薦都是基於單用戶的。即對一個用戶的推薦系統只是基於另一個用戶。這會存在一些問題。比如雖然雖然兩者相似度很高,但是另外一個人有一些怪癖,怪癖的推薦就是不合理的;又比如,在相似度極高的情況下,你不能確定統一賬戶下的操作是同一個人做出的或者說操作行為是為了用戶自身。比如用戶考慮購買某件商品作為禮物送給別人,這就是基於別人喜好的購買行為,這種推薦也是不合適的。
對這種問題的解決可以使用群體劃分的方法。原理與單用戶類似,但是用戶的匹配是k個。在這k位最優匹配的用戶之間,以相似度的大小為依據設定權重作為物品推薦的條件。此即協同過濾的k近鄰。

正如前面提到的基於用戶的推薦有復雜度、稀疏性的問題,而基於物品的過濾則可以緩解這些問題。所謂基於物品的過濾是指,我們事先找到最相似的物品,並結合用戶對物品的評級結果來生成推薦。前提是要對物品進行相似度匹配,找到一種演算法。

這里的調整是指為了減輕用戶評分體系的不一致情況(抵消分數貶值),從每個評級結果中減去該用戶所有物品的平均分的評級結果。

其中,U表示所有同時對i, j進行評級過的用戶的集合。 表示用戶u給物品i的評分減去用戶u對所有物品的評分的平均值。

在得到所有物品的餘弦相似度後,我們就可以通過該指數預測用戶對某件物品的偏好程度。方法就是所有相似物品的相似度乘以得分的總和。

其中p(u, i)指的是用戶u對物品i評分的預測值。N是用戶u的所有評級物品中每個和i得分相似的物品。這里的相似指的是矩陣中存在N和i的一個相似度得分。 是i和N之間的相似度得分。 是u給N的評級結果。公式較好運行的條件是 取值在(-1, 1)之間,這里就要使用歸一化概念。

另一種常用的基於物品過濾的演算法就是 slope one 演算法。它的大概原理是預測用戶u對產品j的評分時,預先計算包含所有物品的兩物品偏差表;根據u的已評價的所有物品評分與該物品和產品j的偏差( )之和並乘以所有對此兩類物品有過評分的用戶個數,一一加總,除以所有同時對產品i與u評價過的所有物品有過評分的用戶的人數,得到得分。公式如下:

其中, ; 是利用加權s1演算法給出的用戶u對物品j的預測值。 指的是對所有除j之外u打過分的物品。

python實現:

在前面兩節中,基於物品和基於用戶的過濾其前提都是用戶需要對已有的item進行評分。而實際上,如果一個新的item出現,由於缺乏別人的偏好,他永遠不會被推薦。這就是推薦系統中所謂的—— 冷啟動 問題。基於用戶評價的系統就會出現這種問題。
冷啟動 問題的解決方案之一就是 基於物品屬性的過濾 來進行推薦:對物品自身的屬性進行歸納總結,並以此進行物品推薦。基於物品屬性的過濾存在一個問題同樣是量綱的不統一。如果量綱不統一極端值將會對推薦系統造成大麻煩。解決方法也很簡單:歸一化。此章使用的是z-評分。
使用z得分也存在問題,就是極易受到離群值的影響。這里可以使用 改進的標准分數 來緩解這個問題:

什麼時候可以進行歸一化呢?

這里用曼哈頓距離舉例基於物品屬性的過濾:

在上一章最後一節對於用戶是否喜歡某件item的判別中,實際上包含了分類器的思想:分類器就是利用對象屬性判定對象屬於哪個組或類別的程序。這里簡單用另一個小項目來說明。

簡單來說就是根據運動員的某些指標來判斷這位運動員屬於什麼類別的運動員。

准確率有0.8。

⑽ python機器學習中可以實現協同過濾嗎

1.背景
協同過濾(collaborative filtering)是推薦系統常用的一種方法。cf的主要思想就是找出物品相似度高的歸為一類進行推薦。cf又分為icf和ucf。icf指的是item collaborative filtering,是將商品進行分析推薦。同理ucf的u指的是user,他是找出知趣相似的人,進行推薦。通常來講icf的准確率可能會高一些,通過這次參加天貓大數據比賽,我覺得只有在數據量非常龐大的時候才適合用cf,如果數據量很小,cf的准確率會非常可憐。博主在比賽s1階段,大概只有幾萬條數據的時候,嘗試了icf,准確率不到百分之一。。。。。
2.常用方法
cf的常用方法有三種,分別是歐式距離法、皮爾遜相關系數法、餘弦相似度法。
測試矩陣,行表示三名用戶,列表示三個品牌,對品牌的喜愛度按照1~5增加。
(1)歐氏距離法
就是計算每兩個點的距離,比如Nike和Sony的相似度。數值越小,表示相似的越高。
[python] view plain print?在CODE上查看代碼片派生到我的代碼片
def OsDistance(vector1, vector2):
sqDiffVector = vector1-vector2
sqDiffVector=sqDiffVector**2
sqDistances = sqDiffVector.sum()
distance = sqDistances**0.5
return distance
(2)皮爾遜相關系數
兩個變數之間的相關系數越高,從一個變數去預測另一個變數的精確度就越高,這是因為相關系數越高,就意味著這兩個變數的共變部分越多,所以從其中一個變數的變化就可越多地獲知另一個變數的變化。如果兩個變數之間的相關系數為1或-1,那麼你完全可由變數X去獲知變數Y的值。
· 當相關系數為0時,X和Y兩變數無關系。
· 當X的值增大,Y也增大,正相關關系,相關系數在0.00與1.00之間
· 當X的值減小,Y也減小,正相關關系,相關系數在0.00與1.00之間
· 當X的值增大,Y減小,負相關關系,相關系數在-1.00與0.00之間
當X的值減小,Y增大,負相關關系,相關系數在-1.00與0.00之間
相關系數的絕對值越大,相關性越強,相關系數越接近於1和-1,相關度越強,相關系數越接近於0,相關度越弱。
clip_image003
在Python中用函數corrcoef實現,具體方法見http//infosec.pku.e.cn/~lz/doc/Numpy_Example_List.htm
(3)餘弦相似度
通過測量兩個向量內積空間的夾角的餘弦值來度量它們之間的相似性。0度角的餘弦值是1,而其他任何角度的
餘弦值都不大於1;並且其最小值是-1。從而兩個向量之間的角度的餘弦值確定兩個向量是否大致指向相同的方向。兩
個向量有相同的指向時,餘弦相似度的值為1;兩個向量夾角為90°時,餘弦相似度的值為0;兩個向量指向完全相
反的方向時,餘弦相似度的值為-1。在比較過程中,向量的規模大小不予考慮,僅僅考慮到向量的指向方向。餘弦相
似度通常用於兩個向量的夾角小於90°之內,因此餘弦相似度的值為0到1之間。
\mathbf{a}\cdot\mathbf{b}=\left\|\mathbf{a}\right\|\left\|\mathbf{b}\right\|\cos\theta
[python] view plain print?在CODE上查看代碼片派生到我的代碼片
def cosSim(inA,inB):
num = float(inA.T*inB)
denom = la.norm(inA)*la.norm(inB)
return 0.5+0.5*(num/denom)

閱讀全文

與python協同過濾演算法相關的資料

熱點內容
pdf中圖片修改 瀏覽:268
匯編編譯後 瀏覽:473
php和java整合 瀏覽:828
js中執行php代碼 瀏覽:440
國產單片機廠商 瀏覽:57
蘋果手機怎麼設置不更新app軟體 瀏覽:284
轉行當程序員如何 瀏覽:492
蘋果id怎麼驗證app 瀏覽:864
查看手機命令 瀏覽:953
抖音反編譯地址 瀏覽:225
如何加密軟體oppoa5 瀏覽:233
java從入門到精通明日科技 瀏覽:94
拆解汽車解壓視頻 瀏覽:597
新版百度雲解壓縮 瀏覽:592
android上下拉刷新 瀏覽:880
centos可執行文件反編譯 瀏覽:838
林清玄pdf 瀏覽:271
黑馬程序員java基礎 瀏覽:284
awss3命令 瀏覽:359
百度店鋪客戶訂單手機加密 瀏覽:502