⑴ 神經網路演算法是什麼
Introction
--------------------------------------------------------------------------------
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
The neuron
--------------------------------------------------------------------------------
雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。
如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。
Learning
--------------------------------------------------------------------------------
正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。
由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。
Architecture
--------------------------------------------------------------------------------
在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。
一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays
盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。
The Function of ANNs
--------------------------------------------------------------------------------
神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。
聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...
是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。
神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞
網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。
⑵ 神經網路演算法原理
一共有四種演算法及原理,如下所示:
1、自適應諧振理論(ART)網路
自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。
2、學習矢量量化(LVQ)網路
學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。
3、Kohonen網路
Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。
4、Hopfield網路
Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。
(2)神經網路演算法pdf擴展閱讀:
人工神經網路演算法的歷史背景:
該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。
BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。
而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。
⑶ 神經網路演算法實例說明有哪些
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
⑷ 神經網路演算法-梯度下降GradientDescent
神經網路文章索引
上一篇神經網路結構中,我們介紹了神經元的結構,激活函數以及每個神經元激活值的演算法,涉及到權重、偏置值等。
上一篇結尾提到,對於28*28的黑白手寫圖像識別,我們需要13002個權重和偏置數值,才能讓我們的神經網路最後輸出正確結果。
所謂的機器學習,就是尋找這13002個數值的過程。首先這里有兩點需要注意:
在負無窮到正無窮之間,如何獲得一萬多個數字最佳的匹配值?這比在全世界挑選1萬人讓TA們一起相愛還要難。
我們的做法是用計算機強大運算速度,暴力解決問題。
好了,現在,暴力不是問題,要想出奇跡的關鍵就在於如何找到如何 優化的規律 。
要想做優化,首先要明確目標,找到當前神經網路和期望結果之間的差距。
從下圖可以看到,隨機設定的神經網路最終輸出的是混亂的一層(被黃色線框標出),距離最右邊我們期望只點亮神經元3的情況差距很大。
我們把混亂輸出層的每個神經元與期望層每個對應神經元激活值相減,然後平方,再累加在一起,這就是方差cost代價,如下圖,計算得到cost是3.37。
我們用這個cost來表示當前神經網路13002個設定值和期望設定值之間的差距,當然,這個cost等於0是差距最小,也就是最接近期望設定值。——當然這只是針對數字3的1張圖片來說,我們需要的是針對0~9共10個數字的數萬張圖片,cost都能是最小。
從下圖,我們來看一下神經網路的功能。它能利用13002個設定值經過3層神經元激活值的計算,把784個像素亮度變為10個數字(我們期望這10個數字中只有一個是1,其他都是0)。
這13002個權重和偏置數字,加上激活值的演算法,就是神經網路的「想法」。
我們再來看看代價函數的情況,如下圖,它是利用很多很多的訓練圖片(已經明確了對應的數字),把13002個數字變為1個cost代價數。
寫成函數形式
我們假設最簡單的情況,只有1個權重和1個偏置:
x和y是任意可能的數值,我們希望知道當x和y是什麼數值的時候z最小。
每一組[x,y]都對應唯一的z,我們可以假想,有無數個[x,y,z]這樣的位置點,在三維空間坐標中,它們就會組成一個面(曲面或平面),如下圖。
從幾何意義上看,我們就是要找到凹陷最低的那個位置點的x,y的值,因為那裡z也就是cost代價最低。
假設上面的xyz繪制的cost曲面是個山地,你是一個旅行者,需要行走找到最低點的位置,你會怎麼辦?
沒錯,只要一直往下走,那麼就能走到所在區域的最低點。——當然,如果山後面還有更深的山谷,那麼你可能找到的只是局部最低點,而並非世界最低點。
實際上,對於復雜的超多維度來說,找到世界最低點幾乎是不可能任務。我們唯一能做的就是多找幾個局部最低點,然後選擇其中最低的那個。
同樣,如果我們落腳在[x',y'],那麼可以嘗試對比[x'+0.1,y'],[x'-0.1,y'],[x',y'-0.1],[x',y'+0.1],如果[x'+0.1,y']是最低的,那麼我們就走到這里,然後繼續嘗試對比四周點的高度。這就是梯度下降的演算法。
如下圖,我們沿著虛線一步一步下山找到最低點。
首先快速的從下圖了解幾個基本概念。
下圖的弧線表示的是某個函數y=f(x),比如拋物線方程y=x 2 。
曲線上任取兩個點a,b,它們對應x和x+dx。(d是指德爾塔大寫Δ,小寫δ)
ab兩點對應的y的差是dy。
現在直線ab看上去是曲線的割線(有ab兩個交點)。
假設b點沿著曲線,越來越靠近a點,那麼dx極限趨近於0,這時候dy也會越來越小趨近於0,但是!我們會意識到dy/dx永遠不會是0,而最終它仍然是角∠cab的對邊比鄰邊,也就是正切三角函數值。
實際上,這也正是曲線的切線的定義。
可以想像,我們取的a點越是靠右,那麼這個切線越是豎直。
如果我們把這個切線看做表示某個一次方程,如y=mx+n這種形式,那麼a點越靠右,直線越豎直,m值也就越大。
我們把m值叫做直線的斜率。
導數derivative ,一元函數y=f(x)(即因變數y只受到一個自變數x影響的函數)中任意取x,如果x增加極小趨近於0的Δx(或者寫為dx),那麼y相應的被增加Δy(或者寫作dy),那麼導數就是dy/dx,而又有dy=f(x+dx)-f(x),所以:
從函數的曲線圖上可以看到,某點的導數就是dx趨近於0時候∠cab的正切,導數反映了切線的陡峭程度,也就是y隨著x變化的快慢程度。
微分differential ,簡單說就是Δx和Δy,或者記作dx和dy。x稱之為自變數,y稱之為因變數,那麼x趨近於最小的時候的值,就是x的微分(趨近0又不是0的那個神秘值),同樣y的微分也是這個意思,總之是想得到又摸不到的神奇值。
斜率slope ,一元一次函數(直線方程)y=mx+n的系數m值。在這里就是a點的導數值f'(x)。
切線tangent ,某個點a的切線,就是經過a點的,以A點斜率為系數的方程y=f'(x)x+n所表示的直線。
自變數dependent variable和因變數 independent variable ,x自己的變化,引發y被動變化。
好了,我們來看 多變數微分Multivariable differential 。
上面都是一個y收到一個x的影響y=f(x),多變數就是不止受到一個自變數的影響,我們以最簡單的z=f(x,y)為例,z=x 2 +y 2 。
綠軸x的變化和紅軸y的變化,都會對應藍軸z的變化。
x從負無窮到正無窮無限種可能,y也是無限種可能,x和y復合到一起就在水平方向覆蓋了全部地面,z值有高有低,就像現實世界中的海拔一樣,把xy平面凸起或凹陷。(圖中粉色沒有畫出全部曲面)
我們可以想像,這時候不能討論A點的切線了,而應該考慮它的 切平面tangent plane (下圖綠色平面)。
方向導數directional derivative ,就是曲面上過A點的任意曲線的切線(下圖紫色線)組成的平面,就是切平面。
這么多紫色的方向中,哪一個方向最陡峭?對於這個z=x 2 +y 2 函數來說,明顯是最接近豎直朝上的那個箭頭和最接近豎直朝下的那個箭頭。
和曲線一樣道理,越陡峭意味著z對x、y的變化越敏感,或者說dx、dy的變化會引發更多的dz。
梯度gradient ,我們規定,能夠引發因變數最快變化的那個切線正方向,就叫做曲面方程上這個點的梯度。注意梯度是個xyz表示的三維方向,例如[0,0,1]表示z軸豎直向上,[0.1,0.1,1]就往xy的正方向偏一點點。
對於只有xy兩個變數的三維曲面來說,我們還可以只是考慮x+0.1,x-0.1,y+0.1,y-0.1這樣的試探方法找到最低點,只要2*2=4次就可以了,周全一點也就8次。
但是對於我們手寫數字識別中13002個自變數來說,那就要2 13002 次,這是不可行的。
借用多元微分,我們可以找到13002個自變數某一隨機點對應的切平面(實際早已不是什麼平面了,我們姑且這么說),也可以計算出其中變化最快的方向,就是梯度,數學家已經證明,不管多少個維度,沿著梯度往前走一步,都能獲得最快變化後新的一個點,這個點是一個n維向量,對於我們的案例來說就是13003個新數字組成的數組[0.322,0.123,0.55,0.222,...0.233]共13003個數字。
唯一要說明的一點不同就是,為了找最低點,我們不是往上走,而是往相反的負方向,朝下走。
步長step size ,就是我們每次沿著 負梯度 往下走多遠,在機器學習演算法裡面它叫做 學習率learning rate ,同樣道理,步子邁小了走得太慢,找到最低點耗時間太久,步子太大了容易跳過最低點(注意,1萬多維的復雜情況不是我們上面三維漏斗曲面那麼簡單可以描述的)。所以我們經常設置0.00001這樣小的數字,好在很多機器學習程序都會適當的自動調整它(比如Tensorflow中的梯度下降優化GradientDescentOptimizer),實際上不會讓它太慢。
同時,我們從上圖中看到,計算出的負梯度是由很多數字組成的數組,每個數字代表一個維度(就像xy那樣),所以我們只要在原來的位置點坐標(比如[x,y])上分別把這個梯度(比如[0.1,-0.3])加上去就能得到新的點([x+0.1,y-0.3])。
內容小結
如果您發現文章錯誤,請不吝留言指正;
如果您覺得有用,請點喜歡;
如果您覺得很有用,感謝轉發~
END
⑸ 神經網路演算法的人工神經網路
人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。 人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 (1)人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
(2)泛化能力
泛化能力指對沒有訓練過的樣本,有很好的預測能力和控制能力。特別是,當存在一些有雜訊的樣本,網路具備很好的預測能力。
(3)非線性映射能力
當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。
(4)高度並行性
並行性具有一定的爭議性。承認具有並行性理由:神經網路是根據人的大腦而抽象出來的數學模型,由於人可以同時做一些事,所以從功能的模擬角度上看,神經網路也應具備很強的並行性。
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,這些年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
下面將人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。 心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路早期的研究工作應追溯至上世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
1985年,Ackley、Hinton和Sejnowski將模擬退火演算法應用到神經網路訓練中,提出了Boltzmann機,該演算法具有逃離極值的優點,但是訓練時間需要很長。
1986年,Rumelhart、Hinton和Williams提出了多層前饋神經網路的學習演算法,即BP演算法。它從證明的角度推導演算法的正確性,是學習演算法有理論依據。從學習演算法角度上看,是一個很大的進步。
1988年,Broomhead和Lowe第一次提出了徑向基網路:RBF網路。
總體來說,神經網路經歷了從高潮到低谷,再到高潮的階段,充滿曲折的過程。
⑹ BP神經網路演算法在CPI指數預測中的應用
下面很詳細
打開就可以了
⑺ 神經網路演算法原理
4.2.1 概述
人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。
神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。
神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。
人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。
儲層特徵研究與預測
以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。
⑻ 神經網路演算法原理
神經網路預測學習樣本中的駕駛行為特徵。如圖顯示了某個駕駛場景的行駛路徑深度學習訓練,通過神經網路可以學習駕駛人的行為,並根據當前獲取的環境信息決策行駛軌跡,進而可以控制車輛的轉向、制動、驅動實現軌跡跟蹤。
⑼ 神經網路演算法的三大類分別是
神經網路演算法的三大類分別是:
1、前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。
2、循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的是用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。
3、對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。
這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。
(9)神經網路演算法pdf擴展閱讀:
應用及發展:
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
⑽ 神經網路演算法是用來干什麼的
神經網路演算法是由多個神經元組成的演算法網路。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生的想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:
1、信息是通過神經元上的興奮模式分布儲在網路上。
2、信息處理是通過神經元之間同時相互作用的動態過程來完成的。
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。