『壹』 什麼是演算法與數據結構
演算法(Algorithm)是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
一個演算法應該具有以下五個重要的特徵:
1、有窮性: 一個演算法必須保證執行有限步之後結束;
2、確切性: 演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
計算機科學家尼克勞斯-沃思曾著過一本著名的書《數據結構十演算法= 程序》,可見演算法在計算機科學界與計算機應用界的地位。
數據結構是計算機存儲、組織數據的方式。數據結構是指相互之間存在一種或多種特定關系的數據元素的集合。通常情況下,精心選擇的數據結構可以帶來更高的運行或者存儲效率。數據結構往往同高效的檢索演算法和索引技術有關。
一般認為,一個數據結構是由數據元素依據某種邏輯聯系組織起來的。對數據元素間邏輯關系的描述稱為數據的邏輯結構;數據必須在計算機內存儲,數據的存儲結構是數據結構的實現形式,是其在計算機內的表示;此外討論一個數據結構必須同時討論在該類數據上執行的運算才有意義。
在許多類型的程序的設計中,數據結構的選擇是一個基本的設計考慮因素。許多大型系統的構造經驗表明,系統實現的困難程度和系統構造的質量都嚴重的依賴於是否選擇了最優的數據結構。許多時候,確定了數據結構後,演算法就容易得到了。有些時候事情也會反過來,我們根據特定演算法來選擇數據結構與之適應。不論哪種情況,選擇合適的數據結構都是非常重要的。
選擇了數據結構,演算法也隨之確定,是數據而不是演算法是系統構造的關鍵因素。這種洞見導致了許多種軟體設計方法和程序設計語言的出現,面向對象的程序設計語言就是其中之一。
在計算機科學中,數據結構是一門研究非數值計算的程序設計問題中計算機的操作對象(數據元素)以及它們之間的關系和運算等的學科,而且確保經過這些運算後所得到的新結構仍然是原來的結構類型。
「數據結構」作為一門獨立的課程在國外是從1968年才開始設立的。 1968年美國唐·歐·克努特教授開創了數據結構的最初體系,他所著的《計算機程序設計技巧》第一卷《基本演算法》是第一本較系統地闡述數據的邏輯結構和存儲結構及其操作的著作。「數據結構」在計算機科學中是一門綜合性的專業基礎課。數據結構是介於數學、計算機硬體和計算機軟體三者之間的一門核心課程。數據結構這一門課的內容不僅是一般程序設計(特別是非數值性程序設計)的基礎,而且是設計和實現編譯程序、操作系統、資料庫系統及其他系統程序的重要基礎。
計算機是一門研究用計算機進行信息表示和處理的科學。這裡面涉及到兩個問題:
信息的表示
信息的處理
而信息的表示和組又直接關繫到處理信息的程序的效率。隨著計算機的普及,信息量的增加,信息范圍的拓寬,使許多系統程序和應用程序的規模很大,結構又相當復雜。因此,為了編寫出一個「好」的程序,必須分析待處理的對象的特徵及各對象之間存在的關系,這就是數據結構這門課所要研究的問題。眾所周知,計算機的程序是對信息進行加工處理。在大多數情況下,這些信息並不是沒有組織,信息(數據)之間往往具有重要的結構關系,這就是數據結構的內容。數據的結構,直接影響演算法的選擇和效率。
計算機解決一個具體問題時,大致需要經過下列幾個步驟:首先要從具體問題中抽象出一個適當的數學模型,然後設計一個解此數學模型的演算法(Algorithm),最後編出程序、進行測試、調整直至得到最終解答。尋求數學模型的實質是分析問題,從中提取操作的對象,並找出這些操作對象之間含有的關系,然後用數學的語言加以描述。計算機演算法與數據的結構密切相關,演算法無不依附於具體的數據結構,數據結構直接關繫到演算法的選擇和效率。運算是由計算機來完成,這就要設計相應的插入、刪除和修改的演算法 。也就是說,數據結構還需要給出每種結構類型所定義的各種運算的演算法。
數據是對客觀事物的符號表示,在計算機科學中是指所有能輸入到計算機中並由計算機程序處理的符號的總稱。
數據元素是數據的基本單位,在計算機程序中通常作為一個整體考慮。一個數據元素由若干個數據項組成。數據項是數據的不可分割的最小單位。有兩類數據元素:一類是不可分割的原子型數據元素,如:整數"5",字元 "N" 等;另一類是由多個款項構成的數據元素,其中每個款項被稱為一個數據項。例如描述一個學生的信息的數據元素可由下列6個數據項組成。其中的出身日期又可以由三個數據項:"年"、"月"和"日"組成,則稱"出身日期"為組合項,而其它不可分割的數據項為原子項。
關鍵字指的是能識別一個或多個數據元素的數據項。若能起唯一識別作用,則稱之為 "主" 關鍵字,否則稱之為 "次" 關鍵字。
數據對象是性質相同的數據元素的集合,是數據的一個子集。數據對象可以是有限的,也可以是無限的。
數據處理是指對數據進行查找、插入、刪除、合並、排序、統計以及簡單計算等的操作過程。在早期,計算機主要用於科學和工程計算,進入八十年代以後,計算機主要用於數據處理。據有關統計資料表明,現在計算機用於數據處理的時間比例達到80%以上,隨著時間的推移和計算機應用的進一步普及,計算機用於數據處理的時間比例必將進一步增大。
數據結構是指同一數據元素類中各數據元素之間存在的關系。數據結構分別為邏輯結構、存儲結構(物理結構)和數據的運算。數據的邏輯結構是對數據之間關系的描述,有時就把邏輯結構簡稱為數據結構。邏輯結構形式地定義為(K,R)(或(D,S)),其中,K是數據元素的有限集,R是K上的關系的有限集。
數據元素相互之間的關系稱為結構。有四類基本結構:集合、線性結構、樹形結構、圖狀結構(網狀結構)。樹形結構和圖形結構全稱為非線性結構。集合結構中的數據元素除了同屬於一種類型外,別無其它關系。線性結構中元素之間存在一對一關系,樹形結構中元素之間存在一對多關系,圖形結構中元素之間存在多對多關系。在圖形結構中每個結點的前驅結點數和後續結點數可以任意多個。
數據結構在計算機中的表示(映像)稱為數據的物理(存儲)結構。它包括數據元素的表示和關系的表示。數據元素之間的關系有兩種不同的表示方法:順序映象和非順序映象,並由此得到兩種不同的存儲結構:順序存儲結構和鏈式存儲結構。順序存儲方法:它是把邏輯上相鄰的結點存儲在物理位置相鄰的存儲單元里,結點間的邏輯關系由存儲單元的鄰接關系來體現,由此得到的存儲表示稱為順序存儲結構。順序存儲結構是一種最基本的存儲表示方法,通常藉助於程序設計語言中的數組來實現。鏈接存儲方法:它不要求邏輯上相鄰的結點在物理位置上亦相鄰,結點間的邏輯關系是由附加的指針欄位表示的。由此得到的存儲表示稱為鏈式存儲結構,鏈式存儲結構通常藉助於程序設計語言中的指針類型來實現。索引存儲方法:除建立存儲結點信息外,還建立附加的索引表來標識結點的地址。散列存儲方法:就是根據結點的關鍵字直接計算出該結點的存儲地址。
數據結構中,邏輯上(邏輯結構:數據元素之間的邏輯關系)可以把數據結構分成線性結構和非線性結構。線性結構的順序存儲結構是一種隨機存取的存儲結構,線性表的鏈式存儲結構是一種順序存取的存儲結構。線性表若採用鏈式存儲表示時所有結點之間的存儲單元地址可連續可不連續。邏輯結構與數據元素本身的形式、內容、相對位置、所含結點個數都無關。
演算法的設計取決於數據(邏輯)結構,而演算法的實現依賴於採用的存儲結構。數據的運算是在數據的邏輯結構上定義的操作演算法,如檢索、插入、刪除、更新的排序等。
『貳』 什麼是數據結構和演算法
數據結構,Data_Structure,其中D是數據元素的集合,R是該集合中所有元素之間的關系的有限集合。數據結構則是指相互之間存在一種或多種特定關系的數據元素的集合。通常情況下,精心選擇的數據結構可以帶來更高的運行或者存儲效率。數據結構往往同高效的檢索演算法和索引技術有關。
數據結構是計算機專業學生在大學期間都會學習的一門課程,但是由於課程偏理論,缺乏實際操作的學習體驗,而讓大家產生了一種「數據結構不重要,我只要學習了Java/C語言/Python同樣能敲代碼」的錯覺,但其實它是一門集技術性、理論性和實踐性於一體的課程。
演算法是某一系列運算步驟,它表達解決某一類計算問題的一般方法,對這類方法的任何一個輸入,它可以按步驟一步一步計算,最終產生一個輸出。
小碼哥的李明傑也說過所有的計算問題,都離不開要計算的對象或者要處理的信息,如何高效的把它們組織起來,就是數據結構關心的問題,所以演算法是離不開數據結構的,這就是數據與演算法。
『叄』 什麼是數據結構什麼是演算法演算法與程序有什麼關系
在計算機編程領域,數據結構與演算法的應用是無處不在。比如圖像視頻處理、數據壓縮、資料庫、游戲開發、操作系統、編譯器、搜索引擎、AR、VR、人工智慧、區塊鏈等領域,都是以數據結構與演算法為基石。
數據結構與演算法屬於開發人員的基本內功,也能訓練大腦的思考能力,掌握一次,終生受益。扎實的數據結構與演算法功底,能讓我們站在更高的角度去思考代碼、寫出性能更優的程序,能讓我們更快速地學習上手各種新技術(比如人工智慧、區塊鏈等),也能讓我們敲開更高級編程領域的大門。
數據結構與演算法更是各大名企面試題中的常客,如果不想被行業拋棄、想進入更大的名企、在IT道路上走得更遠,掌握數據結構與演算法是非常有必要。
『肆』 資料庫技術知識數據結構的演算法
資料庫技術知識數據結構的演算法
對於將要參加計算機等級考試的考生來說,計算機等級考試的知識點輔導是非常重要的復習資料。以下是我收集的資料庫技術知識數據結構的演算法,希望大家認真閱讀!
1、數據:數據的基本單位是數據元素。數據元素可由一個或多個數據項組成。數據項是數據的不可分割的最小單位
2、數據結構:數據的邏輯結構、數據的存儲結構、數據的運算
3、主要的數據存儲方式:順序存儲結構(邏輯和物理相鄰,存儲密度大)和鏈式存儲結構
順序存儲結構:
順序存儲計算公式 Li=L0+(i-1)×K 順序結構可以進行隨機存取;插人、刪除運算會引起相應節點的大量移動
鏈式存儲結構:a、指針域可以有多個,可以指向空,比比順序存儲結構的存儲密度小
b、邏輯上相鄰的節點物理上不一定相鄰。 c、插人、刪除等不需要大量移動節點
4、順序表:一般情況下,若長度為n的順序表,在任何位置插入或刪除的概率相等,元素移動的平均次數為n/2(插入)和(n-1)/2(刪除)。
5、鏈表:線性鏈表(單鏈表和雙向鏈表等等)和非線性鏈表
線性鏈表也稱為單鏈表,其每個一節點中只包含一個指針域,雙鏈表中,每個節點中設置有兩個指針域。(注意結點的插入和刪除操作)
6、棧:“後進先出”(LIFO)表。棧的應用:表達式求解、二叉樹對稱序周遊、快速排序演算法、遞歸過程的實現等
7、隊列:“先進先出”線性表。應用:樹的層次遍歷
8、串:由零個或多個字元組成的有限序列。
9、多維數組的順序存儲:
10、稀疏矩陣的存儲:下三角矩陣順序存儲
其他常見的存儲方法還有三元組法和十字鏈表法
11、廣義表:由零個或多個單元素或子表所組成的有限序列。廣義表的元素可以是子表,而子表的元素還可以是子表
12、樹型結構:非線性結構。常用的樹型結構有樹和二叉樹。
二叉樹與樹的區別:二叉樹不是樹的特殊情況,樹和二叉樹之間最主要的區別是:二叉樹的節點的子樹要區分左子樹和右子樹,即使在節點只有一棵子樹的情況下也要明確指出該子樹是左子樹還是右子樹。
13、樹(森林)與二叉樹之間的轉換(要會轉換)
14、二叉樹和樹的周遊(遍歷)
二叉樹的周遊主要有以下3種方式:前序法(NLR)、對稱序法(LNR)、後序法(LRN)
周遊樹和樹林:深度優先和按廣度優先兩種方式進行。深度優先方式又可分為按先根次序和按後根次序周遊
樹與二叉樹周遊之間的對應關系:按先根次序周遊樹正好與按前序法周遊樹對應的二叉樹等同,後根次序周遊樹正好與按對稱序法周遊對應的`二叉樹等同
按廣度優先方式就是層次次序周遊
15、二叉樹的存儲和線索
二叉樹的存儲結構:二叉樹的llink一rlink法存儲表示
線索二叉樹:在有n個節點的二叉樹的且llink - rlink法存儲表示中,必定有n+1個空指針域
16、哈夫曼樹:一類帶權路徑長度最短的樹。樹的帶權路徑長度為樹中所有葉子節點的帶權路徑長度之和WPL。
17、查找:
(1)順序查找:平均查找長度為(n +1 )/2次,時間復雜度為O(n)
(2)二分法查找:線性表節點必須按關鍵碼值排序,且線性表是以順序存儲方式存儲的。查找成功比較次數log2n,查找失敗比較次數log2n+1
(3)分塊查找:先是塊間查找,然後塊內查找。
(4)散列表(哈希表Hash)的存儲和查找:處理沖突的方法:開地址法(線性探測法)、拉鏈法等
負載因子(裝填因子)=表實際存儲的結點個數/表的最大能存儲結點個數(即表長)
二叉排序樹:每個結點左子樹的所有關鍵碼值都小於該結點關鍵碼值,右子樹所有結點關鍵碼值都大於該結點關鍵碼值。對稱周遊二叉排序樹,得到一個有序序列,時間復雜度O(log2n)
B樹和B+樹:M階樹,每個結點至多有M-1個關鍵碼,至少有M/2(取上界)-1個關鍵碼。B樹適合隨機查找,不適合順序查找。B+樹適合順序查找。
18、排序
直接插人排序、希爾排序、直接選擇排序、堆排序、起泡排序、快速排序等排序演算法要了解。
直接選擇排序、希爾排序、快速排序和堆排序是不穩定排序,其他排序為穩定排序
;『伍』 數據結構與演算法的內容簡介
本書是國家級雙語教學示範課程《數據結構》的配套教材,根據教育部高等學校計算機科學與技術教學指導委員會制定的《高等學校計算機科學與技術專業發展戰略研究報告暨專業規范》編寫。全書每章均以數據的邏輯結構、存儲結構和相應的演算法實現為主線,並對演算法的運算效率進行分析。全書分為8章,涵蓋了各種常見數據結構。第1章主要介紹數據結構和演算法分析的基本概念,第2~6章主要介紹典型的線性結構、樹型結構和圖型結構,第7~8章分別介紹查找和排序操作。另外,每章後面附有習題和上機實驗內容,上機實驗提供了完整的、可運行的程序上機實驗供讀者參考,以加深讀者對所學知識的理解和應用。本書既可作為高等院校計算機及相關專業數據結構課程的教學用書,也可作為從事計算機工程與應用的廣大讀者的參考書。
『陸』 什麼是數據結構和演算法學演算法還需要去了解數據結構嗎
你這理解不完全正確。
因為數據結構不只是內存中數據的排列,它是對數據的一種組織方式,就像圖書館要排書一樣,是為了便於操作,同時它本身也集成了對通用操作:比如查找、比較等的支持。數組不是一種數據結構,而是一種數據類型。一個完整的數據結構包括邏輯結構和存儲結構。通常選擇了數據結構,演算法也隨之確定,是數據而不是演算法是系統構造的關鍵因素。
因此在語言實現上,數據結構通常也會包含與之相對應的演算法集合,這些演算法是指基本演算法:查找、索引、比較等。
數據結構的邏輯結構和硬體是沒有關系的,而其存儲結構受到計算機硬體系統工作方式的影響,通常這點影響在於數據時順序存儲還是離散存儲。演算法的基礎是數據結構。只有指定明確的數據結構,演算法才能設計完成,脫離數據結構,演算法是無法,也不可能成立的。因為不需要數據的演算法就不是一個有效的計算機演算法,演算法中任何對數據的組織形式都可以被稱之為數據結構。
2.數據結構在編程中的地位是極其重要的,是一個程序實現的基礎中的基礎,在此基礎上才能構建演算法。通常而言,你不了解什麼高深的演算法,一樣能完成工作,但是如果你不了解基本的數據結構,那麼可以說,你根本就不能完成一個任何有實質性內容的程序。Donald Ervin Knuth教授在其《計算機程序設計藝術》的第一卷《基本演算法》中花費的絕大部分的篇幅去論述數據結構。由此可見數據結構對演算法的重要性。
『柒』 一文帶你認識30個重要的數據結構和演算法
數組是最簡單也是最常見的數據結構。它們的特點是可以通過索引(位置)輕松訪問元素。
它們是做什麼用的?
想像一下有一排劇院椅。每把椅子都分配了一個位置(從左到右),因此每個觀眾都會從他將要坐的椅子上分配一個號碼。這是一個數組。將問題擴展到整個劇院(椅子的行和列),您將擁有一個二維數組(矩陣)。
特性
鏈表是線性數據結構,就像數組一樣。鏈表和數組的主要區別在於鏈表的元素不存儲在連續的內存位置。它由節點組成——實體存儲當前元素的值和下一個元素的地址引用。這樣,元素通過指針鏈接。
它們是做什麼用的?
鏈表的一個相關應用是瀏覽器的上一頁和下一頁的實現。雙鏈表是存儲用戶搜索顯示的頁面的完美數據結構。
特性
堆棧是一種抽象數據類型,它形式化了受限訪問集合的概念。該限制遵循 LIFO(後進先出)規則。因此,添加到堆棧中的最後一個元素是您從中刪除的第一個元素。
堆棧可以使用數組或鏈表來實現。
它們是做什麼用的?
現實生活中最常見的例子是在食堂中將盤子疊放在一起。位於頂部的板首先被移除。放置在最底部的盤子是在堆棧中保留時間最長的盤子。
堆棧最有用的一種情況是您需要獲取給定元素的相反順序。只需將它們全部推入堆棧,然後彈出它們。
另一個有趣的應用是有效括弧問題。給定一串括弧,您可以使用堆棧檢查它們是否匹配。
特性
隊列是受限訪問集合中的另一種數據類型,就像前面討論的堆棧一樣。主要區別在於隊列是按照FIFO(先進先出)模型組織的:隊列中第一個插入的元素是第一個被移除的元素。隊列可以使用固定長度的數組、循環數組或鏈表來實現。
它們是做什麼用的?
這種抽象數據類型 (ADT) 的最佳用途當然是模擬現實生活中的隊列。例如,在呼叫中心應用程序中,隊列用於保存等待從顧問那裡獲得幫助的客戶——這些客戶應該按照他們呼叫的順序獲得幫助。
一種特殊且非常重要的隊列類型是優先順序隊列。元素根據與它們關聯的「優先順序」被引入隊列:具有最高優先順序的元素首先被引入隊列。這個 ADT 在許多圖演算法(Dijkstra 演算法、BFS、Prim 演算法、霍夫曼編碼 )中是必不可少的。它是使用堆實現的。
另一種特殊類型的隊列是deque 隊列(雙關語它的發音是「deck」)。可以從隊列的兩端插入/刪除元素。
特性
Maps (dictionaries)是包含鍵集合和值集合的抽象數據類型。每個鍵都有一個與之關聯的值。
哈希表是一種特殊類型的映射。它使用散列函數生成一個散列碼,放入一個桶或槽數組:鍵被散列,結果散列指示值的存儲位置。
最常見的散列函數(在眾多散列函數中)是模常數函數。例如,如果常量是 6,則鍵 x 的值是x%6。
理想情況下,散列函數會將每個鍵分配給一個唯一的桶,但他們的大多數設計都採用了不完善的函數,這可能會導致具有相同生成值的鍵之間發生沖突。這種碰撞總是以某種方式適應的。
它們是做什麼用的?
Maps 最著名的應用是語言詞典。語言中的每個詞都為其指定了定義。它是使用有序映射實現的(其鍵按字母順序排列)。
通訊錄也是一張Map。每個名字都有一個分配給它的電話號碼。
另一個有用的應用是值的標准化。假設我們要為一天中的每一分鍾(24 小時 = 1440 分鍾)分配一個從 0 到 1439 的索引。哈希函數將為h(x) = x.小時*60+x.分鍾。
特性
術語:
因為maps 是使用自平衡紅黑樹實現的(文章後面會解釋),所以所有操作都在 O(log n) 內完成;所有哈希表操作都是常量。
圖是表示一對兩個集合的非線性數據結構:G={V, E},其中 V 是頂點(節點)的集合,而 E 是邊(箭頭)的集合。節點是由邊互連的值 - 描述兩個節點之間的依賴關系(有時與成本/距離相關聯)的線。
圖有兩種主要類型:有向圖和無向圖。在無向圖中,邊(x, y)在兩個方向上都可用:(x, y)和(y, x)。在有向圖中,邊(x, y)稱為箭頭,方向由其名稱中頂點的順序給出:箭頭(x, y)與箭頭(y, x) 不同。
它們是做什麼用的?
特性
圖論是一個廣闊的領域,但我們將重點介紹一些最知名的概念:
一棵樹是一個無向圖,在連通性方面最小(如果我們消除一條邊,圖將不再連接)和在無環方面最大(如果我們添加一條邊,圖將不再是無環的)。所以任何無環連通無向圖都是一棵樹,但為了簡單起見,我們將有根樹稱為樹。
根是一個固定節點,它確定樹中邊的方向,所以這就是一切「開始」的地方。葉子是樹的終端節點——這就是一切「結束」的地方。
一個頂點的孩子是它下面的事件頂點。一個頂點可以有多個子節點。一個頂點的父節點是它上面的事件頂點——它是唯一的。
它們是做什麼用的?
我們在任何需要描繪層次結構的時候都使用樹。我們自己的家譜樹就是一個完美的例子。你最古老的祖先是樹的根。最年輕的一代代表葉子的集合。
樹也可以代表你工作的公司中的上下級關系。這樣您就可以找出誰是您的上級以及您應該管理誰。
特性
二叉樹是一種特殊類型的樹:每個頂點最多可以有兩個子節點。在嚴格二叉樹中,除了葉子之外,每個節點都有兩個孩子。具有 n 層的完整二叉樹具有所有2ⁿ-1 個可能的節點。
二叉搜索樹是一棵二叉樹,其中節點的值屬於一個完全有序的集合——任何任意選擇的節點的值都大於左子樹中的所有值,而小於右子樹中的所有值。
它們是做什麼用的?
BT 的一項重要應用是邏輯表達式的表示和評估。每個表達式都可以分解為變數/常量和運算符。這種表達式書寫方法稱為逆波蘭表示法 (RPN)。這樣,它們就可以形成一個二叉樹,其中內部節點是運算符,葉子是變數/常量——它被稱為抽象語法樹(AST)。
BST 經常使用,因為它們可以快速搜索鍵屬性。AVL 樹、紅黑樹、有序集和映射是使用 BST 實現的。
特性
BST 有三種類型的 DFS 遍歷:
所有這些類型的樹都是自平衡二叉搜索樹。不同之處在於它們以對數時間平衡高度的方式。
AVL 樹在每次插入/刪除後都是自平衡的,因為節點的左子樹和右子樹的高度之間的模塊差異最大為 1。 AVL 以其發明者的名字命名:Adelson-Velsky 和 Landis。
在紅黑樹中,每個節點存儲一個額外的代表顏色的位,用於確保每次插入/刪除操作後的平衡。
在 Splay 樹中,最近訪問的節點可以快速再次訪問,因此任何操作的攤銷時間復雜度仍然是 O(log n)。
它們是做什麼用的?
AVL 似乎是資料庫理論中最好的數據結構。
RBT(紅黑樹) 用於組織可比較的數據片段,例如文本片段或數字。在 Java 8 版本中,HashMap 是使用 RBT 實現的。計算幾何和函數式編程中的數據結構也是用 RBT 構建的。
在 Windows NT 中(在虛擬內存、網路和文件系統代碼中),Splay 樹用於緩存、內存分配器、垃圾收集器、數據壓縮、繩索(替換用於長文本字元串的字元串)。
特性
最小堆是一棵二叉樹,其中每個節點的值都大於或等於其父節點的值:val[par[x]]
『捌』 數據結構中有哪些基本演算法
數據結構中最基本的演算法有:查找、排序、快速排序,堆排序,歸並排序,,二分搜索演算法
等等。
1、用的最多也是最簡單的數據結構是線性表。
2、有前途的又難數據結構是圖 。
3、常用的80%演算法是排序和查找。
『玖』 演算法和數據結構有什麼區別
一、指代不同
1、演算法:是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令。
2、數據結構:指相互之間存在一種或多種特定關系的數據元素的集合。
二、目的不同
1、演算法:指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。
2、數據結構:研究的是數據的邏輯結構和數據的物理結構之間的相互關系,並對這種結構定義相適應的運算,設計出相應的演算法,並確保經過這些運算以後所得到的新結構仍保持原來的結構類型。
三、特點不同
1、演算法:演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步驟,即每個計算步驟都可以在有限時間內完成。
2、數據結構:核心技術是分解與抽象。通過分解可以劃分出數據的3個層次;再通過抽象,舍棄數據元素的具體內容,就得到邏輯結構。
『拾』 計算機二級數據結構與演算法知識點
一、數據結構
(1)數據結構的基本概念
1、數據:數據是客觀事物的符號表示,是能輸入到計算機中並被計算程序識別和處理的符號的總稱,如文檔,聲音,視頻等。
2、數據元素:數據元素是數據的基本單位。
3、數據對象:數據對象是性質相同的數據元素的集合。
4、數據結構:是指由某一數據對象中所有數據成員之間的關系組成的集合。
(2)邏輯結構和存儲結構
1、數據結構可分為數據的邏輯結構和存儲結構。
1)數據的邏輯結構是對數據元素之間的邏輯關系的描述,與數據的存儲無關,是面向問題的,是獨立於計算機的。它包括數據對象和數據對象之間的關系。
2)數據的存儲結構也稱為數據的物理結構,是數據在計算機中的存放的方式,是面向計算機的,它包括數據元素的存儲方式和關系的存儲方式。
2、存儲結構和邏輯結構的關系:一種數據的邏輯結構可以表示成多種存儲結構即數據的邏輯結構和存儲結構不一定一一對應。
3、常見的存儲結構有:順序,鏈接,索引等。採用不同的存儲結構其數據處理的效率是不同的。