A. 計算機網路通訊簡答題:擴散路由演算法原理
距離矢量演算法是向相鄰節點交換自己的路由信息,每次收到新的路由信息都需要進行計算以更新路由表,收斂速度較慢;鏈路狀態演算法是向全網節點宣告自己的鏈路狀態信息,使用洪泛的方式擴散,不需要計算直接轉發信息,收斂速度較快,但需要較大的存儲空間來記錄所有節點信息。
B. 用Matlab/C實現基於Dijkstra的路由選擇演算法實現
雖然是兩百分 讓人家還編程給你 太麻煩了吧
C. .現代計算機網路通常使用的路由演算法是( )
動態路由ospf eigrp 等等
D. 什麼是路由啊 路由的組成 以及路由的演算法
路由:路由(routing)是指分組從源到目的地時,決定端到端路徑的網路范圍的進程。路由工作在OSI參考模型第三層——網路層的數據包轉發設備。路由器通過轉發數據包來實現網路互連。雖然路由器可以支持多種協議(如TCP/IP、IPX/SPX、AppleTalk等協議),但是在我國絕大多數路由器運行TCP/IP協議。路由器通常連接兩個或多個由IP子網或點到點協議標識的邏輯埠,至少擁有1個物理埠。路由器根據收到數據包中的網路層地址以及路由器內部維護的路由表決定輸出埠以及下一跳地址,並且重寫鏈路層數據包頭實現轉發數據包。路由器通過動態維護路由表來反映當前的網路拓撲,並通過網路上其他路由器交換路由和鏈路信息來維護路由表。
路由器的組成:
RAM(隨機存儲器)
功能:存放路由表;存放ARP告訴緩存;存放快速交換緩存;存放分組交換緩沖;存放解壓後的IOS;路由器加電後,存放running配置文件;
特點:重啟或者斷電後,RAM中的內容丟失。
NVRAM(非易失性RAM)
功能:存儲路由器的startup配置文件;存儲路由器的備份。
特點:重啟或者斷電後內容不丟失。
FLASH(快速快閃記憶體)
功能:存放IOS和微代碼。
特點:重啟或者斷電後內容不丟失;可存放多個IOS版本(在容量許可的前提下);允許軟體升級不需替換CPU中的晶元。
ROM(只讀存儲器)
功能:存放POST診斷所需的指令;存放mini-ios;存放ROM監控模式的代碼。
特點:ROM中的軟體升級需要更換CPU的晶元(還好這種情況比較少遇到)
CPU(中央處理器)
衡量路由器性能的重要指標,負責路由計算,路由選擇等。
背板:
背板能力是一個重要參數,尤其在交換機中。
路由演算法:又名選路演算法,可以根據多個特性來加以區分。演算法的目的是找到一條從源路由器到目的路由器的「好」路徑(即具有最低費用的路徑[1])。演算法設計者的特定目標影響了該路由協議的操作;具體來說存在著多種路由演算法,每種演算法對網路和路由器資源的影響都不同;由於路由演算法使用多種度量標准(metric),從而影響到最佳路徑的計算。
演算法分類:主要有RIP、IGRP(IGRP為 Cisco公司的私有協議);鏈路狀態路由協議基於圖論中非常著名的Dijkstra演算法,即最短優先路徑(Shortest Path First, SPF)演算法,如OSPF。在距離向量路由協議中,路由器將部分或全部的路由表傳遞給與其相鄰的路由器;而在鏈路狀態路由協議中,路由器將鏈路狀態信息傳 遞給在同一區域內的所有路由器。 根據路由器在自治系統(AS)中的位置,可將路由協議分為內部網關協議 (Interior Gateway Protocol,IGP)和外部網關協議(External Gateway Protocol,EGP,也叫域 間路由協議)。域間路由協議有兩種:外部網關協議(EGP)和邊界網關協議(BGP)。EGP是為一個簡單的樹型拓撲結構而設計的,在處理選路循環和設置 選路策略時,具有明顯的缺點,已被BGP代替。
E. 計算機網路中的距離向量演算法(RIP)的基本原理
RIP協議採用距離向量演算法,在實際使用中已經較少適用。在默認情況下,RIP使用一種非常簡單的度量制度:距離就是通往目的站點所需經過的鏈路數,取值為1~15,數值16表示無窮大。RIP進程使用UDP的520埠來發送和接收RIP分組。RIP分組每隔30s以廣播的形式發送一次,為了防止出現「廣播風暴」,其後續的的分組將做隨機延時後發送。在RIP中,如果一個路由在180s內未被刷,則相應的距離就被設定成無窮大,並從路由表中刪除該表項。RIP分組分為兩種:請求分組和響應分組。
F. 距離矢量路由演算法 (計算機網路題
通過B到個點的距離為:(11,6,14,18,12,8),因為B到A的距離為5,C到B的距離為6所以C到A的距離更新為5+6=11,C到B的距離沒變為6,C通過B到C的距離為6+8=14,C通過B到D的距離為6+12=18,C通過B到E距離6+6=12,C通過B到F距離為6+2=8。
通過D到個點的距離為:(19,15,9,3,12,13),通過D到A的距離為3+16=19,通過D到B的距離為3+12=15,通過D到C的距離為6+3=9,通過D到D的距離為3,通過D到E的距離為3+9=12,通過D到F的距離為3+10=13。
通過E到個點的距離為:(12,11,8,14,5,9),通過E到A的距離為5+7=12,通過E到B的距離為5+6=11,通過E到C的距離為5+3=8,通過E到D的距離為5+9=14,通過E到Eden距離為5,通過E到F的距離為9。
取到達每一目的地的最小值(C除外)得到: (11, 6,0,3, 5,8)就得出了新的路由表。輸出的路線輸出線路是: (B,,B, -,D,E, B)。
(6)計算機網路路由演算法擴展閱讀:
路由演算法的度量標准:
路由演算法使用了許多種不同的度量標准去決定最佳路徑。復雜的路由演算法可能採用多種度量來選擇路由,通過一定的加權運算,將它們合並為單個的復合度量、再填入路由表中,作為尋徑的標准。
通常所使用的度量有:路徑長度、可靠性、時延、帶寬、負載、通信成本等。
路徑長度:
路徑長度是最常用的路由。一些路由協議允許網管給每個網路連接人工賦以代價值,這種情況下,路由長度是所經過各個鏈接的代價總和。
可靠性:
可靠性,在路由演算法中指網路連接的可依賴性(通常以位誤率描述),有些網路連接可能比其它的失效更多,網路失效後,一些網路連接可能比其它的更易或更快修復。
路由延遲:
路由延遲指分組從源通過網路到達目的所花時間。很多因素影響到延遲,包括中間的網路連接的帶寬、經過的每個路由器的埠隊列、所有中間網路連接的擁塞程度以及物理距離。
帶寬
帶寬指連接可用的流通容量。在其它所有條件都相等時,10Mbps的乙太網鏈接比64kbps的專線更可取。雖然帶寬是鏈接可獲得的最大吞吐量,但是通過具有較大帶寬的鏈接做路由不一定比經過較慢鏈接路由更好。
負載:
負載指網路資源,如路由器的繁忙程度。負載可以用很多方面計算,包括CPU使用情況和每秒處理分組數。持續地監視這些參數本身也是很耗費資源的。
通信代價:
通信代價是另一種重要的metric,尤其是有一些公司可能關心運作費用甚於關心性能。即使線路延遲可能較長,他們也寧願通過自己的線路發送數據而不採用昂貴的公用線路。
參考資料來源:網路-路由演算法
G. 理想路由演算法的特點
一個理想的路由選擇演算法所應具有的特點是:正確性.簡單性.堅定性.穩定性.公平性.最佳性。
H. 計算機網路-4-6-互聯網的路由選擇協議
路由選擇協議的核心是 路由演算法 。即 需要一種演算法來獲取路表中的各項 ,一個比較好的路由選擇演算法應該有以下特點[BELL86]:
一個實際的路由選擇演算法,應該盡可能的接近於理想的演算法,在不同的應用條件下,可以對上面提出的六個方面有不同的側重。
倘若從路由演算法能否隨網路的通信量或拓撲自適應的進行調整變化來劃分,則只有兩大類: 靜態路由選擇策略 和 動態路由選擇策略 。靜態路由選擇策略也叫做 非自適應路由選擇 ,其特點是簡單和開銷較小,但不能即使適應網路狀態的變化。對於很簡單的小網路,完全可以採用靜態路由選擇,用人工配置每一條路由。動態路由選擇也叫做 自適應路由選擇 ,其特點是能夠較好的適應網路狀態的變化,但實現起來較為復雜,開銷也比較大,因此動態路由選擇適用於較復雜的大網路。
互聯網採用的路由選擇協議主要是自適應的(動態的),分布式路由選擇協議。由於以下兩種原因,互聯網採用分層次的路由選擇協議:
為此,可以把整個互聯網劃分為許多較小的 自治系統AS(autonomous system) ,自治系統AS是在單一技術管理下的一組路由器,而這些路由器使用一種自治系統內部的路由選擇協議和共同的度量,一個AS對其他AS表現的出是 一個單一的和一致的路由選擇策略 。
在目前的互聯網中,一個大的ISP就是一個自治系統。這樣,互聯網就把路由選擇協議劃分為兩大類:
自治系統之間的路由選擇協議也叫做 域間路由選擇(interdomain routing) ,而在自治系統內部的路由選擇叫做 域內路由選擇(intradomain routing) 。如圖4-31
RIP(routing information protocol)是內部網關協議IGP中最先得到廣泛使用的協議[RFC1058],也叫 路由信息協議 ,RIP是一種分布式的 基於距離向量的路由選擇協議 。最大的優點就是簡單。
RIP協議要求網路中的每一個路由器都要維護從它自己到其他每一個目的網路的距離記錄(因此這是一組距離,叫做距離向量),RIP將距離定義如下:
從一路由器到直接連接的網路的距離為1,從路由器到非之間的網路的距離定義為所經過的路由器數+1。
RIP協議的距離也稱之為 跳數 ,但是一條跳數最多隻能包含15個路由器,因此,當距離=16時,就相當於不可達。因此RIP只能適用於小型互聯網。
注意的是,到直接連接的網路也定義為0(採用這種定義的理由是:路由器在和直接連接在該網路上的主機進行通信並不需要經過另外的路由器,既然經過每一個路由器都要將距離增加1,那麼不經過路由器就不需要+1,就是0)。
RIP不能在兩個網路之間同時使用多條路由。RIP選擇一條具有最少路由器的路由(最短路由),哪怕還存在另一條高速低延時的但是路由器較多的路由。
路由器在剛開始工作的時候,其內部路由表是空的。然後路由器就可以和直接相連的幾個網路的距離(這些距離為1),接著,每個路由器和與自己相連的路由器不斷交換路由表信息,經過若干次更新後,所有的路由器最終就可以知道本自治系統中任何一個網路地址和最短下一跳路由器的地址。
路由器最主要的信息是:到某個網路的距離(最短距離),以及下一跳的地址,路由表更新的原則是找出到每個網路的 最短距離 ,這種演算法又稱之為 距離向量演算法 。
對 每一個相鄰的路由器 發送過來的RIP報文,進行以下步驟:
演算法描述:其實就是求一個路由器到另一個路由器的最短距離。
例題:
已知路由器R6有表4-9(a)所表示的路由表,現在收到相鄰路由器路由表R4發過來的路由更新信息,如圖4-9(b)所示。試更新路由器R6的路由表。
解:首先把R4發過來的路由表中的距離都+1:
把這個表和R6的路由表進行比較:
RIP協議讓每一個自治系統中的所有路由都和自己的相鄰路由器定期交換路由表信息,並不斷更新路由表,使得每從 每一個路由器到每一個目的網路的路由都是最短距離(也就是跳數最小)。
現在比較新的RIP協議報文格式是1998年提出的RIP2。
RIP協議使用運輸層的用戶數據報(UDP埠為520)進行傳輸。
RIP報文由首部和路由部分組成。
RIP首部佔4個位元組,其中的命令欄位指出報文的意義。
RIP2報文中的路由部分有若幹路由信息組成,每個路由信息需要用20位元組。 地址標識符(又稱地址列別) 欄位用來標識所用的地址協議。如果採用IP地址就為2。 路由標記填入自治系統號ASN(Autonomous System Number) ,這是考慮使用RIP有可能收到本自治系統以外的路由選擇信息,再後面指出某個 網路地址 , 下一跳路由器地址 以及 到此網路的距離 ,一個RIP報文最多可以包含25個路由,因而RIP報文的最大長度是4+20x25=504位元組。如果超過,則必然再使用以惡搞RIP報文來傳送。
RIP還具有簡單的鑒別功能,若使用鑒別功能,則將原來寫入第一個路由信息(20位元組)的位置用作鑒別,這時應該將地址標識符置為全1(0xFFFF),而路由標記寫入鑒別類別,剩下的16位元組作為鑒別數據,在鑒別數據之後才能寫入路由信息,但這時只能寫入24個路由信息。
RIP存在的一個問題是 當網路出現故障的時候,要經過比較長的時間才能將信息傳送到所有的路由器 ,RIP協議的這一特點是: 好消息傳播的很快,而壞消息傳播的很慢 ,網路出現故障的傳播時間往往需要經過較長時間,這是RIP協議的一個主要缺點。
為了使壞消息傳播的更快些,可以採用多種措施,例如,讓路由器記錄收到某特定路由信息的介面,而不是讓同一個路由信息再通過此介面反方向傳送。
總之,RIP協議最大的優點是 實現簡單,開銷較小 ,但RIP協議缺點也很明顯,首先 限制了網路規模,因為路由器最大的跳數是15跳,一般中大型網路規模RIP協議就不適用了 。其次就是 路由器之間交換的路由信息是路由器中完整的路由表,因而隨著網路規模變大,開銷也就增加 。最後就是 好消息傳播的很快,壞消息傳播的很慢 。
I. 計算機網路中的路由器使用距離向量演算法
1、假設路由器使用距離向量演算法,下圖給出了網路拓撲及路由器的初始路由表(只包含部分欄位),假設A給B傳了一次路由信息,B處理後又也給C傳了一次路由信息,請在表中填寫經過路由信息交換之後B和C的路由表(相鄰路由器間距離計為1)。
2、B路由器增加2條:10.3.0.0 s0 1
10.4.0.0 s1 1
3、C路由器增加2條:10.3.0.0 s0 2
10.2.0.0 S0 1
J. 計算機網路路由演算法
關於路由器如何收集網路的結構信息以及對之進行分析來確定最佳路由,有兩種主要的路由演算法:
總體式路由演算法和分散式路由演算法。採用分散式路由演算法時,每個路由器只有與它直接相連的路由器的信息——而沒有網路中的每個路由器的信息。這些演算法也被稱為DV(距離向量)演算法。採用總體式路由演算法時,每個路由器都擁有網路中所有其他路由器的全部信息以及網路的流量狀態。這些演算法也被稱為LS(鏈路狀態)演算法。