Ⅰ 排序演算法概述
十大排序演算法:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序、希爾排序、計數排序,基數排序,桶排序
穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,前一個鍵排序的結果可以為後一個鍵排序所用。
演算法的復雜度往往取決於數據的規模大小和數據本身分布性質。
時間復雜度 : 一個演算法執行所耗費的時間。
空間復雜度 :對一個演算法在運行過程中臨時佔用存儲空間大小的量度。
常見復雜度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)
在各種不同演算法中,若演算法中語句執行次數(佔用空間)為一個常數,則復雜度為O(1);
當一個演算法的復雜度與以2為底的n的對數成正比時,可表示為O(log n);
當一個演算法的復雜度與n成線性比例關系時,可表示為O (n),依次類推。
冒泡、選擇、插入排序需要兩個for循環,每次只關注一個元素,平均時間復雜度為
(一遍找元素O(n),一遍找位置O(n))
快速、歸並、堆基於分治思想,log以2為底,平均時間復雜度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相關
而希爾排序依賴於所取增量序列的性質,但是到目前為止還沒有一個最好的增量序列 。例如希爾增量序列時間復雜度為O(n²),而Hibbard增量序列的希爾排序的時間復雜度為 , 有人在大量的實驗後得出結論;當n在某個特定的范圍後希爾排序的最小時間復雜度大約為n^1.3。
從平均時間來看,快速排序是效率最高的:
快速排序中平均時間復雜度O(nlog n),這個公式中隱含的常數因子很小,比歸並排序的O(nlog n)中的要小很多,所以大多數情況下,快速排序總是優於合並排序的。
而堆排序的平均時間復雜度也是O(nlog n),但是堆排序存在著重建堆的過程,它把根節點移除後,把最後的葉子結點拿上來後需要重建堆,但是,拿上的值是要比它的兩個葉子結點要差很多的,一般要比較很多次,才能回到合適的位置。堆排序就會有很多的時間耗在堆調整上。
雖然快速排序的最壞情況為排序規模(n)的平方關系,但是這種最壞情況取決於每次選擇的基準, 對於這種情況,已經提出了很多優化的方法,比如三取樣劃分和Dual-Pivot快排。
同時,當排序規模較小時,劃分的平衡性容易被打破,而且頻繁的方法調用超過了O(nlog n)為
省出的時間,所以一般排序規模較小時,會改用插入排序或者其他排序演算法。
一種簡單的排序演算法。它反復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。這個工作重復地進行直到沒有元素再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為元素會經由交換慢慢「浮」到數列的頂端。
1.從數組頭開始,比較相鄰的元素。如果第一個比第二個大(小),就交換它們兩個;
2.對每一對相鄰元素作同樣的工作,從開始第一對到尾部的最後一對,這樣在最後的元素應該會是最大(小)的數;
3.重復步驟1~2,重復次數等於數組的長度,直到排序完成。
首先,找到數組中最大(小)的那個元素;
其次,將它和數組的第一個元素交換位置(如果第一個元素就是最大(小)元素那麼它就和自己交換);
再次,在剩下的元素中找到最大(小)的元素,將它與數組的第二個元素交換位置。如此往復,直到將整個數組排序。
這種方法叫做選擇排序,因為它在不斷地選擇剩餘元素之中的最大(小)者。
對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
為了給要插入的元素騰出空間,我們需要將插入位置之後的已排序元素在都向後移動一位。
插入排序所需的時間取決於輸入中元素的初始順序。例如,對一個很大且其中的元素已經有序(或接近有序)的數組進行排序將會比對隨機順序的數組或是逆序數組進行排序要快得多。
總的來說,插入排序對於部分有序的數組十分高效,也很適合小規模數組。
一種基於插入排序的快速的排序演算法。簡單插入排序對於大規模亂序數組很慢,因為元素只能一點一點地從數組的一端移動到另一端。例如,如果主鍵最小的元素正好在數組的盡頭,要將它挪到正確的位置就需要N-1 次移動。
希爾排序為了加快速度簡單地改進了插入排序,也稱為縮小增量排序,同時該演算法是突破O(n^2)的第一批演算法之一。
希爾排序是把待排序數組按一定數量的分組,對每組使用直接插入排序演算法排序;然後縮小數量繼續分組排序,隨著數量逐漸減少,每組包含的元素越來越多,當數量減至 1 時,整個數組恰被分成一組,排序便完成了。這個不斷縮小的數量,就構成了一個增量序列。
在先前較大的增量下每個子序列的規模都不大,用直接插入排序效率都較高,盡管在隨後的增量遞減分組中子序列越來越大,由於整個序列的有序性也越來越明顯,則排序效率依然較高。
從理論上說,只要一個數組是遞減的,並且最後一個值是1,都可以作為增量序列使用。有沒有一個步長序列,使得排序過程中所需的比較和移動次數相對較少,並且無論待排序列記錄數有多少,演算法的時間復雜度都能漸近最佳呢?但是目前從數學上來說,無法證明某個序列是「最好的」。
常用的增量序列
希爾增量序列 :{N/2, (N / 2)/2, ..., 1},其中N為原始數組的長度,這是最常用的序列,但卻不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表達式為
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法的一個非常典型的應用。
對於給定的一組數據,利用遞歸與分治技術將數據序列劃分成為越來越小的半子表,在對半子表排序後,再用遞歸方法將排好序的半子表合並成為越來越大的有序序列。
為了提升性能,有時我們在半子表的個數小於某個數(比如15)的情況下,對半子表的排序採用其他排序演算法,比如插入排序。
若將兩個有序表合並成一個有序表,稱為2-路歸並,與之對應的還有多路歸並。
快速排序(Quicksort)是對冒泡排序的一種改進,也是採用分治法的一個典型的應用。
首先任意選取一個數據(比如數組的第一個數)作為關鍵數據,我們稱為基準數(Pivot),然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序,也稱為分區(partition)操作。
通過一趟快速排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數組變成有序序列。
為了提升性能,有時我們在分割後獨立的兩部分的個數小於某個數(比如15)的情況下,會採用其他排序演算法,比如插入排序。
基準的選取:最優的情況是基準值剛好取在無序區數值的中位數,這樣能夠最大效率地讓兩邊排序,同時最大地減少遞歸劃分的次數,但是一般很難做到最優。基準的選取一般有三種方式,選取數組的第一個元素,選取數組的最後一個元素,以及選取第一個、最後一個以及中間的元素的中位數(如4 5 6 7, 第一個4, 最後一個7, 中間的為5, 這三個數的中位數為5, 所以選擇5作為基準)。
Dual-Pivot快排:雙基準快速排序演算法,其實就是用兩個基準數, 把整個數組分成三份來進行快速排序,在這種新的演算法下面,比經典快排從實驗來看節省了10%的時間。
許多應用程序都需要處理有序的元素,但不一定要求他們全部有序,或者不一定要一次就將他們排序,很多時候,我們每次只需要操作數據中的最大元素(最小元素),那麼有一種基於二叉堆的數據結構可以提供支持。
所謂二叉堆,是一個完全二叉樹的結構,同時滿足堆的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。在一個二叉堆中,根節點總是最大(或者最小)節點。
堆排序演算法就是抓住了這一特點,每次都取堆頂的元素,然後將剩餘的元素重新調整為最大(最小)堆,依次類推,最終得到排序的序列。
推論1:對於位置為K的結點 左子結點=2 k+1 右子結點=2 (k+1)
驗證:C:2 2 2+1=5 2 (2+1)=6
推論2:最後一個非葉節點的位置為 (N/2)-1,N為數組長度。
驗證:數組長度為6,(6/2)-1=2
計數排序對一定范圍內的整數排序時候的速度非常快,一般快於其他排序演算法。但計數排序局限性比較大,只限於對整數進行排序,而且待排序元素值分布較連續、跨度小的情況。
計數排序是一個排序時不比較元素大小的排序演算法。
如果一個數組里所有元素都是整數,而且都在0-K以內。對於數組里每個元素來說,如果能知道數組里有多少項小於或等於該元素,就能准確地給出該元素在排序後的數組的位置。
桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,利用某種函數的映射關系將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序)。
桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當於快排中劃分,已經把大量數據分割成了基本有序的數據塊(桶)。然後只需要對桶中的少量數據做排序即可。
常見的數據元素一般是由若干位組成的,比如字元串由若干字元組成,整數由若干位0~9數字組成。基數排序按照從右往左的順序,依次將每一位都當做一次關鍵字,然後按照該關鍵字對數組排序,同時每一輪排序都基於上輪排序後的結果;當我們將所有的位排序後,整個數組就達到有序狀態。基數排序不是基於比較的演算法。
基數是什麼意思?對於十進制整數,每一位都只可能是0~9中的某一個,總共10種可能。那10就是它的基,同理二進制數字的基為2;對於字元串,如果它使用的是8位的擴展ASCII字元集,那麼它的基就是256。
基數排序 vs 計數排序 vs 桶排序
基數排序有兩種方法:
MSD 從高位開始進行排序
LSD 從低位開始進行排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定范圍的數值
有時,待排序的文件很大,計算機內存不能容納整個文件,這時候對文件就不能使用內部排序了(我們一般的排序都是在內存中做的,所以稱之為內部排序,而外部排序是指待排序的內容不能在內存中一下子完成,它需要做內外存的內容交換),外部排序常採用的排序方法也是歸並排序,這種歸並方法由兩個不同的階段組成:
採用適當的內部排序方法對輸入文件的每個片段進行排序,將排好序的片段(成為歸並段)寫到外部存儲器中(通常由一個可用的磁碟作為臨時緩沖區),這樣臨時緩沖區中的每個歸並段的內容是有序的。
利用歸並演算法,歸並第一階段生成的歸並段,直到只剩下一個歸並段為止。
例如要對外存中4500個記錄進行歸並,而內存大小隻能容納750個記錄,在第一階段,我們可以每次讀取750個記錄進行排序,這樣可以分六次讀取,進行排序,可以得到六個有序的歸並段
每個歸並段的大小是750個記錄,並將這些歸並段全部寫到臨時緩沖區(由一個可用的磁碟充當)內了,這是第一步的排序結果。
完成第二步該怎麼做呢?這時候歸並演算法就有用處了。
Ⅱ java實現幾種常見排序演算法
下面給你介紹四種常用排序演算法:
1、冒泡排序
特點:效率低,實現簡單
思想(從小到大排):每一趟將待排序序列中最大元素移到最後,剩下的為新的待排序序列,重復上述步驟直到排完所有元素。這只是冒泡排序的一種,當然也可以從後往前排。
Ⅲ 什麼是分治演算法
分治法就是將一個復雜的問題分成多個相對簡單的獨立問題進行求解,並且綜合所有簡單問題的解可以組成這個復雜問題的解。
例如快速排序演算法就是一個分治法的例子。即將一個大的無序序列排序成有序序列,等於將兩個無序的子序列排序成有序,且兩個子序列之間滿足一個序列的元素普遍大於另一個序列中的元素。
Ⅳ 在插入排序、冒泡排序、快速排序、歸並排序等排序演算法中,佔用輔助空間最多的是哪個
在插入排序、冒泡排序、快速排序、歸並排序等排序演算法中,佔用輔助空間最多的是歸並排序。
對n個記錄的文件進行快速排序,所需要的輔助存儲空間大致為O(1og2n)。
1、所有的簡單排序方法(包括:直接插入、起泡和簡單選擇)和堆排序的空間復雜度為O(1);
2、快速排序為O(logn),為棧所需的輔助空間;
3、歸並排序所需輔助空間最多,其空間復雜度為O(n);
4、鏈式基數排序需附設隊列首尾指針,則空間復雜度為O(rd)。
(4)分治思想的排序演算法擴展閱讀
計算機排序演算法的特點
1、有窮性
一個演算法應包含有限的操作步驟,而不能是無限的。有窮性值在合理范圍之內,如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。
2、確定性
演算法中的每一個步驟都應當是確定的,而不應當是含糊的,摩棱兩可的。演算法中的每一個步驟應當不致被解釋成不同含義的,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生歧義性。
3、有零個或多個輸入
所謂輸入,即在執行演算法是需要從外界取得必要的信息。
4、有一個或多個輸出
演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。
5、有效性
演算法中的每一個步驟都應當能有效的執行,並得到確定的結果。
Ⅳ 分治的介紹
分治,字面上的解釋是「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。在計算機科學中,分治法就是運用分治思想的一種很重要的演算法。分治法是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換)等等。
Ⅵ 歸並排序演算法是什麼
歸並排序演算法定義如下:
歸並排序演算法就是利用分治思想將數組分成兩個小組A,B,再將A,B小組各自分成兩個小組,依次類推,直到分出來的小組只有一個數據時,可以認為這個小組已經是有序的了,然後再合並相鄰的二個小組就可以了。這樣通過先遞歸的分解數組,再合並數組,就完成了歸並排序。
歸並排序演算法特點:
由於歸並排序在歸並過程中需要與原始記錄序列同樣數量的存儲空間存放歸並結果以及遞歸時深度為log2n(2為底)的棧空間。
因此空間復雜度為O(n+logn),Merge函數中if(SR[i] < SR[j])語句說明需要兩兩比較,不存在跳躍,因此歸並排序是一種穩定的排序演算法,歸並排序是一種比較佔用內存,但卻效率高且穩定的演算法。
Ⅶ 分治演算法——漢諾塔問題
一、分治演算法概念
「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題,直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。
這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換) 。
任何一個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
二、分治法的設計思想
將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
三、分治策略
對於一個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞歸地解這些子問題,然後將各子問題的解合並得到原問題的解。這種演算法設計策略叫做分治法。
四、分治法實現步驟
①分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;②解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;③合並:將各個子問題的解合並為原問題的解。
它的一般的演算法設計模式如下: Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 將P分解為較小的子問題 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) 遞歸解決Pi 6. T ← MERGE(y1,y2,…,yk) 合並子問題 7. return(T)
五、可使用分治法求解的一些經典問題 (1)二分搜索
(2)大整數乘法
(3)Strassen矩陣乘法
(4)棋盤覆蓋
(5)合並排序
(6)快速排序
(7)線性時間選擇
(8)最接近點對問題
(9)循環賽日程表
(10)漢諾塔
Ⅷ 什麼是分治法的合並排序
分治法、是一種很重要的演算法。字面上的解釋是「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換)……
合並排序、是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。 將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。
都是網路復制來的,別鄙視。以解決問題為根本原則。對你有幫助就好!
Ⅸ 基本排序演算法原理
演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素 。
演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素
演算法步驟
1) 設置兩個變數i、j,排序開始的時候:i=0,j=n-1;
2)第一個數組值作為比較值,首先保存到temp中,即temp=A[0];
3)然後j-- ,向前搜索,找到小於temp後,因為s[i]的值保存在temp中,所以直接賦值,s[i]=s[j]
4)然後i++,向後搜索,找到大於temp後,因為s[j]的值保存在第2步的s[i]中,所以直接賦值,s[j]=s[i],然後j--,避免死循環
5)重復第3、4步,直到i=j,最後將temp值返回s[i]中
6) 然後採用「二分」的思想,以i為分界線,拆分成兩個數組 s[0,i-1]、s[i+1,n-1]又開始排序
排序圖解
演算法原理:從第一個元素開始,左邊視為已排序數組,右邊視為待排序數組,從左往右依次取元素,插入左側已排序數組,對插入新元素的左側數組重新生成有序數組 。需要注意的是,在往有序數組插入一個新元素的過程中,我們可以採用按 順序循環 比較,也可以通過 折半查找法 來找到新元素的位置,兩種方式的效率 取決於數組的數據量
演算法原理:希爾排序也是利用插入排序的思想來排序。希爾排序通過將比較的全部元素分為幾個區域來提升插入排序的性能。這樣可以讓一個元素可以一次性地朝最終位置前進一大步。然後演算法再取越來越小的步長進行排序,演算法的最後一步就是普通的插入排序,但是到了這步,需排序的數據幾乎是已排好的了,插入效率比較高。
排序圖解
選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。選擇排序的主要優點與數據移動有關。如果某個元素位於正確的最終位置上,則它不會被移動。選擇排序每次交換一對元素,它們當中至少有一個將被移到其最終位置上,因此對n個元素的表進行排序總共進行至多n-1次交換。在所有的完全依靠交換去移動元素的排序方法中,選擇排序屬於非常好的一種。
歸並排序,顧名思義就是一種 「遞歸合並」 的排序方法(這個理解很重要)。對於一個數列,我們把它進行二分處理,依次遞歸下去,然後將小范圍的數進行排序,最後將其合並在一起。就實現了歸並排序。
這實際上是運用了 分治思想 ,顯然,想要把一個數列排好序,最終達到的目的就是它的任何一部分都是有序的。這樣的話,我們可以考慮分別把數列分成N多個部分,讓每個部分分別有序,然後再將其統一,變成所有的東西都有序。這樣就實現了排序。這個想法就叫分治思想。
排序圖解
排序圖解
Ⅹ 幾種經典排序演算法優劣比較的C++程序實現
一、低級排序演算法
1.選擇排序
(1)排序過程
給定一個數值集合,循環遍歷集合,每次遍歷從集合中選擇出最小或最大的放入集合的開頭或結尾的位置,下次循環從剩餘的元素集合中遍歷找出最小的並如上操作,最後直至所有原集合元素都遍歷完畢,排序結束。
(2)實現代碼
//選擇排序法
template
void Sort::SelectSort(T* array, int size)
{
int minIndex;
for(int i = 0; i < size; i++)
{
minIndex = i;
for(int j = i + 1; j < size; j++)
{
if(array[minIndex] > array[j])
{
minIndex = j;
}
}
if(minIndex != i)
{
Swap(array, i, minIndex);
}
}
}
(3)分析總結
選擇排序時間復雜度比較高,達到了O(n^2),每次選擇都要遍歷一遍無序區間。選擇排序對一類重要的元素序列具有較好的效率,就是元素規模很大,而排序碼卻比較小的序列。另外要說明的是選擇排序是一種不穩定的排序方法。
2.冒泡排序
(1)排序過程
冒泡排序的過程形如其名,就是依次比較相鄰兩個元素,優先順序高(或大或小)的元素向後移動,直至到達序列末尾,無序區間就會相應地縮小。下一次再從無序區間進行冒泡操作,依此循環直至無序區間為1,排序結束。
(2)實現代碼
//冒泡排序法
template
void Sort::BubbleSort(T* array, int size)
{
for(int i = 0; i < size; i++)
{
for(int j = 1; j < size - i; j++)
{
if(array[j] < array[j - 1])
{
Swap(array, j, j - 1);
}
}
}
}
(3)分析總結
冒泡排序的時間復雜度也比較高,達到O(n^2),每次遍歷無序區間都將優先順序高的元素移動到無序區間的末尾。冒泡排序是一種穩定的排序方式。
二、高級排序演算法
(1)排序過程
歸並排序的原理比較簡單,也是基於分治思想的。它將待排序的元素序列分成兩個長度相等的子序列,然後為每一個子序列排序,然後再將它們合並成一個序列。
(2)實現代碼
//歸並排序
template
void Sort::MergeSort(T* array, int left, int right)
{
if(left < right)
{
int mid = (left + right) / 2;
MergeSort(array, left, mid);
MergeSort(array, mid + 1, right);
Merge(array, left, mid, right);
}
}
//合並兩個已排好序的子鏈
template
void Sort::Merge(T* array, int left, int mid, int right)
{
T* temp = new T[right - left + 1];
int i = left, j = mid + 1, m = 0;
while(i <= mid && j <= right)
{
if(array[i] < array[j])
{
temp[m++] = array[i++];
}
else
{
temp[m++] = array[j++];
}
}
while(i <= mid)
{
temp[m++] = array[i++];
}
while(j <= right)
{
temp[m++] = array[j++];
}
for(int n = left, m = 0; n <= right; n++, m++)
{
array[n] = temp[m];
}
delete temp;
}
(3)分析總結
歸並排序最好、最差和平均時間復雜度都是O(nlogn),是一種穩定的排序演算法。