⑴ 編譯原理全部的名詞解釋
書上有別那麼懶!.
編譯過程的六個階段:詞法分析,語法分析,語義分析,中間代碼生成,代碼優化,目標代碼生成
解釋程序:把某種語言的源程序轉換成等價的另一種語言程序——目標語言程序,然後再執行目標程序.解釋方式是接受某高級語言的一個語句輸入,進行解釋並控制計算機執行,馬上得到這句的執行結果,然後再接受下一句.
編譯程序:就是指這樣一種程序,通過它能夠將用高級語言編寫的源程序轉換成與之在邏輯上等價的低級語言形式的目標程序(機器語言程序或匯編語言程序).
解釋程序和編譯程序的根本區別:是否生成目標代碼
句子的二義性(這里的二義性是指語法結構上的.):文法G[S]的一個句子如果能找到兩種不同的最左推導(或最右推導),或者存在兩棵不同的語法樹,則稱這個句子是二義性的.
文法的二義性:一個文法如果包含二義性的句子,則這個文法是二義文法,否則是無二義文法.
LL(1)的含義:(LL(1)文法是無二義的; LL(1)文法不含左遞歸)
第1個L:從左到右掃描輸入串 第2個L:生成的是最左推導
1 :向右看1個輸入符號便可決定選擇哪個產生式
某些非LL(1)文法到LL(1)文法的等價變換: 1. 提取公因子 2. 消除左遞歸
文法符號的屬性:單詞的含義,即與文法符號相關的一些信息.如,類型、值、存儲地址等.
一個屬性文法(attribute grammar)是一個三元組A=(G, V, F)
G:上下文無關文法.
V:屬性的有窮集.每個屬性與文法的一個終結符或非終結符相連.屬性與變數一樣,可以進行計算和傳遞.
F:關於屬性的斷言或謂詞(一組屬性的計算規則)的有窮集.斷言或語義規則與一個產生式相聯,只引用該產生式左端或右端的終結符或非終結符相聯的屬性.
綜合屬性:若產生式左部的單非終結符A的屬性值由右部各非終結符的屬性值決定,則A的屬性稱為綜合屬
繼承屬性:若產生式右部符號B的屬性值是根據左部非終結符的屬性值或者右部其它符號的屬性值決定的,則B的屬性為繼承屬性.
(1)非終結符既可有綜合屬性也可有繼承屬性,但文法開始符號沒有繼承屬性.
(2) 終結符只有綜合屬性,沒有繼承屬性,它們由詞法程序提供.
在計算時: 綜合屬性沿屬性語法樹向上傳遞;繼承屬性沿屬性語法樹向下傳遞.
語法制導翻譯:是指在語法分析過程中,完成附加在所使用的產生式上的語義規則描述的動作.
語法制導翻譯實現:對單詞符號串進行語法分析,構造語法分析樹,然後根據需要構造屬性依賴圖,遍歷語法樹並在語法樹的各結點處按語義規則進行計算.
中間代碼(中間語言)
1、是復雜性介於源程序語言和機器語言的一種表示形式.
2、一般,快速編譯程序直接生成目標代碼.
3、為了使編譯程序結構在邏輯上更為簡單明確,常採用中間代碼,這樣可以將與機器相關的某些實現細節置於代碼生成階段仔細處理,並且可以在中間代碼一級進行優化工作,使得代碼優化比較容易實現.
何謂中間代碼:源程序的一種內部表示,不依賴目標機的結構,易於代碼的機械生成.
為何要轉換成中間代碼:(1)邏輯結構清楚;利於不同目標機上實現同一種語言.
(2)便於移植,便於修改,便於進行與機器無關的優化.
中間代碼的幾種形式:逆波蘭記號 ,三元式和樹形表示 ,四元式
符號表的一般形式:一張符號表的的組成包括兩項,即名字欄和信息欄.
信息欄包含許多子欄和標志位,用來記錄相應名字和種種不同屬性,名字欄也稱主欄.主欄的內容稱為關鍵字(key word).
符號表的功能:(1)收集符號屬性 (2) 上下文語義的合法性檢查的依據: 檢查標識符屬性在上下文中的一致性和合法性.(3)作為目標代碼生成階段地址分配的依據
符號的主要屬性及作用:
1. 符號名 2. 符號的類型 (整型、實型、字元串型等))3. 符號的存儲類別(公共、私有)
4. 符號的作用域及可視性 (全局、局部) 5. 符號變數的存儲分配信息 (靜態存儲區、動態存儲區)
存儲分配方案策略:靜態存儲分配;動態存儲分配:棧式、 堆式.
靜態存儲分配
1、基本策略
在編譯時就安排好目標程序運行時的全部數據空間,並能確定每個數據項的單元地址.
2、適用的分配對象:子程序的目標代碼段;全局數據目標(全局變數)
3、靜態存儲分配的要求:不允許遞歸調用,不含有可變數組.
FORTRAN程序是段結構,不允許遞歸,數據名大小、性質固定. 是典型的靜態分配
動態存儲分配
1、如果一個程序設計語言允許遞歸過程、可變數組或允許用戶自由申請和釋放空間,那麼,就需要採用動態存儲管理技術.
2、兩種動態存儲分配方式:棧式,堆式
棧式動態存儲分配
分配策略:將整個程序的數據空間設計為一個棧.
【例】在具有遞歸結構的語言程序中,每當調用一個過程時,它所需的數據空間就分配在棧頂,每當過程工作結束時就釋放這部分空間.
過程所需的數據空間包括兩部分
一部分是生存期在本過程這次活動中的數據對象.如局部變數、參數單元、臨時變數等;
另一部分則是用以管理過程活動的記錄信息(連接數據).
活動記錄(AR)
一個過程的一次執行所需要的信息使用一個連續的存儲區來管理,這個區 (塊)叫做一個活動記錄.
構成
1、臨時工作單元;2、局部變數;3、機器狀態信息;4、存取鏈;
5、控制鏈;6、實參;7、返回地址
什麼是代碼優化
所謂優化,就是對代碼進行等價變換,使得變換後的代碼運行結果與變換前代碼運行結果相同,而運行速度加快或佔用存儲空間減少.
優化原則:等價原則:經過優化後不應改變程序運行的結果.
有效原則:使優化後所產生的目標代碼運行時間較短,佔用的存儲空間較小.
合算原則:以盡可能低的代價取得較好的優化效果.
常見的優化技術
(1) 刪除多餘運算(刪除公共子表達式) (2) 代碼外提 +刪除歸納變數+ (3)強度削弱; (4)變換循環控制條件 (5)合並已知量與復寫傳播 (6)刪除無用賦值
基本塊定義
程序中只有一個入口和一個出口的一段順序執行的語句序列,稱為程序的一個基本塊.
給我分數啊.
⑵ 編譯原理
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象[1]。
中文名
編譯原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
領域
計算機專業的一門重要專業課[1]
快速
導航
編譯器
編譯原理課程
編譯技術的發展
編譯的基本流程
編譯過程概述
基本概念
編譯原理即是對高級程序語言進行翻譯的一門科學技術, 我們都知道計算機程序由程序語言編寫而成, 在早期計算機程序語言發展較為緩慢, 因為計算機存儲的數據和執行的程序都是由0、1代碼組合而成的, 那麼在早期程序員編寫計算機程序時必須十分了解計算機的底層指令代碼通過將這些微程序指令組合排列從而完成一個特定功能的程序, 這就對程序員的要求非常高了。人們一直在研究如何如何高效的開發計算機程序, 使編程的門檻降低。[2]
編譯器
C語言編譯器是一種現代化的設備, 其需要藉助計算機編譯程序, C語言編譯器的設計是一項專業性比較強的工作, 設計人員需要考慮計算機程序繁瑣的設計流程, 還要考慮計算機用戶的需求。計算機的種類在不斷增加, 所以, 在對C語言編譯器進行設計時, 一定要增加其適用性。C語言具有較強的處理能力, 其屬於結構化語言, 而且在計算機系統維護中應用比較多, C語言具有高效率的優點, 在其不同類型的計算機中應用比較多。[3]
C語言編譯器前端設計
編譯過程一般是在計算機系統中實現的, 是將源代碼轉化為計算機通用語言的過程。編譯器中包含入口點的地址、名稱以及機器代碼。編譯器是計算機程序中應用比較多的工具, 在對編譯器進行前端設計時, 一定要充分考慮影響因素, 還要對詞法、語法、語義進行分析。[3]
1 詞法分析[3]
詞法分析是編譯器前端設計的基礎階段, 在這一階段, 編譯器會根據設定的語法規則, 對源程序進行標記, 在標記的過程中, 每一處記號都代表著一類單詞, 在做記號的過程中, 主要有標識符、關鍵字、特殊符號等類型, 編譯器中包含詞法分析器、輸入源程序、輸出識別記號符, 利用這些功能可以將字型大小轉化為熟悉的單詞。[3]
2 語法分析[3]
語法分析是指利用設定的語法規則, 對記號中的結構進行標識, 這包括句子、短語等方式, 在標識的過程中, 可以形成特殊的結構語法樹。語法分析對編譯器功能的發揮有著重要影響, 在設計的過程中, 一定要保證標識的准確性。[3]
3 語義分析[3]
語義分析也需要藉助語法規則, 在對語法單元的靜態語義進行檢查時, 要保證語法規則設定的准確性。在對詞法或者語法進行轉化時, 一定要保證語法結構設置的合法性。在對語法、詞法進行檢查時, 語法結構設定不合理, 則會出現編譯錯誤的問題。前端設計對精確性要求比較好, 設計人員能夠要做好校對工作, 這會影響到編譯的准確性, 如果前端設計存在失誤, 則會影響C語言編譯的效果。[3]
⑶ java語言中提及的「堆」主要有什麼用「棧又有什麼用」
Java把內存劃分成兩種:一種是棧內存,另一種是堆內存。在函數中定義的一些基本類型的變數和對象的引用變數都是在函數的棧內存中分配,當在一段代碼塊定義一個變數時,Java就在棧中為這個變數分配內存空間,當超過變數的作用域後,Java 會自動釋放掉為該變數分配的內存空間,該內存空間可以立即被另作它用。
堆內存用來存放由 new 創建的對象和數組,在堆中分配的內存,由 Java 虛擬機的自動垃圾回收器來管理。在堆中產生了一個數組或者對象之後,還可以在棧中定義一個特殊的變數,讓棧中的這個變數的取值等於數組或對象在堆內存中的首地址,棧中的這個變數就成了數組或對象的引用變數,以後就可以在程序中使用棧中的引用變數來訪問堆中的數組或者對象,引用變數就相當於是為數組或者對象起的一個名稱。引用變數是普通的變數,定義時在棧中分配,引用變數在程序運行到其作用域之外後被釋放。而數組和對象本身在堆中分配,即使程序運行到使用 new 產生數組或者對象的語句所在的代碼塊之外,數組和對象本身占據的內存不會被釋放,數組和對象在沒有引用變數指向它的時候,才變為垃圾,不能在被使用,但仍然占據內存空間不放,在隨後的一個不確定的時間被垃圾回收器收走(釋放掉)。
這也是Java比較占內存的原因,實際上,棧中的變數指向堆內存中的變數,這就是 Java 中的指針!
java中內存分配策略及堆和棧的比較
1 內存分配策略
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.這種分配策略要求程序代碼中不允許有可變數據結構(比如可變數組)的存在,也不允許有嵌套或者遞歸的結構出現,因為它們都會導致編譯程序無法計算準確的存儲空間需求.
棧式存儲分配也可稱為動態存儲分配,是由一個類似於堆棧的運行棧來實現的.和靜態存儲分配相反,在棧式存儲方案中,程序對數據區的需求在編譯時是完全未知的,只有到運行的時候才能夠知道,但是規定在運行中進入一個程序模塊時,必須知道該程序模塊所需的數據區大小才能夠為其分配內存.和我們在數據結構所熟知的棧一樣,棧式存儲分配按照先進後出的原則進行分配。
靜態存儲分配要求在編譯時能知道所有變數的存儲要求,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時模塊入口處都無法確定存儲要求的數據結構的內存分配,比如可變長度串和對象實例.堆由大片的可利用塊或空閑塊組成,堆中的內存可以按照任意順序分配和釋放.
2 堆和棧的比較
上面的定義從編譯原理的教材中總結而來,除靜態存儲分配之外,都顯得很呆板和難以理解,下面撇開靜態存儲分配,集中比較堆和棧:
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.而這種不同又主要是由於堆和棧的特點決定的:
在編程中,例如C/C++中,所有的方法調用都是通過棧來進行的,所有的局部變數,形式參數都是從棧中分配內存空間的。實際上也不是什麼分配,只是從棧頂向上用就行,就好像工廠中的傳送帶(conveyor belt)一樣,Stack Pointer會自動指引你到放東西的位置,你所要做的只是把東西放下來就行.退出函數的時候,修改棧指針就可以把棧中的內容銷毀.這樣的模式速度最快, 當然要用來運行程序了.需要注意的是,在分配的時候,比如為一個即將要調用的程序模塊分配數據區時,應事先知道這個數據區的大小,也就說是雖然分配是在程序運行時進行的,但是分配的大小多少是確定的,不變的,而這個"大小多少"是在編譯時確定的,不是在運行時.
堆是應用程序在運行的時候請求操作系統分配給自己內存,由於從操作系統管理的內存分配,所以在分配和銷毀時都要佔用時間,因此用堆的效率非常低.但是堆的優點在於,編譯器不必知道要從堆里分配多少存儲空間,也不必知道存儲的數據要在堆里停留多長的時間,因此,用堆保存數據時會得到更大的靈活性。事實上,面向對象的多態性,堆內存分配是必不可少的,因為多態變數所需的存儲空間只有在運行時創建了對象之後才能確定.在C++中,要求創建一個對象時,只需用 new命令編制相關的代碼即可。執行這些代碼時,會在堆里自動進行數據的保存.當然,為達到這種靈活性,必然會付出一定的代價:在堆里分配存儲空間時會花掉更長的時間!這也正是導致我們剛才所說的效率低的原因,看來列寧同志說的好,人的優點往往也是人的缺點,人的缺點往往也是人的優點(暈~).
3 JVM中的堆和棧
JVM是基於堆棧的虛擬機.JVM為每個新創建的線程都分配一個堆棧.也就是說,對於一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法.我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在線程的 Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變數,中間計算過程和其他數據.這個幀在這里和編譯原理中的活動紀錄的概念是差不多的.
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進後出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,並由應用所有的線程共享.跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分配,也就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而已。
Java 中的堆和棧
Java把內存劃分成兩種:一種是棧內存,一種是堆內存。
在函數中定義的一些基本類型的變數和對象的引用變數都在函數的棧內存中分配。
當在一段代碼塊定義一個變數時,Java就在棧中為這個變數分配內存空間,當超過變數的作用域後,Java會自動釋放掉為該變數所分配的內存空間,該內存空間可以立即被另作他用。
堆內存用來存放由new創建的對象和數組。
在堆中分配的內存,由Java虛擬機的自動垃圾回收器來管理。
在堆中產生了一個數組或對象後,還可以在棧中定義一個特殊的變數,讓棧中這個變數的取值等於數組或對象在堆內存中的首地址,棧中的這個變數就成了數組或對象的引用變數。
引用變數就相當於是為數組或對象起的一個名稱,以後就可以在程序中使用棧中的引用變數來訪問堆中的數組或對象。
具體的說:
棧與堆都是Java用來在Ram中存放數據的地方。與C++不同,Java自動管理棧和堆,程序員不能直接地設置棧或堆。
Java的堆是一個運行時數據區,類的(對象從中分配空間。這些對象通過new、newarray、anewarray和multianewarray等指令建立,它們不需要程序代碼來顯式的釋放。堆是由垃圾回收來負責的,堆的優勢是可以動態地分配內存大小,生存期也不必事先告訴編譯器,因為它是在運行時動態分配內存的,Java的垃圾收集器會自動收走這些不再使用的數據。但缺點是,由於要在運行時動態分配內存,存取速度較慢。
棧的優勢是,存取速度比堆要快,僅次於寄存器,棧數據可以共享。但缺點是,存在棧中的數據大小與生存期必須是確定的,缺乏靈活性。棧中主要存放一些基本類型的變數(,int, short, long, byte, float, double, boolean, char)和對象句柄。
棧有一個很重要的特殊性,就是存在棧中的數據可以共享。假設我們同時定義:
int a = 3;
int b = 3;
編譯器先處理int a = 3;首先它會在棧中創建一個變數為a的引用,然後查找棧中是否有3這個值,如果沒找到,就將3存放進來,然後將a指向3。接著處理int b = 3;在創建完b的引用變數後,因為在棧中已經有3這個值,便將b直接指向3。這樣,就出現了a與b同時均指向3的情況。這時,如果再令a=4;那麼編譯器會重新搜索棧中是否有4值,如果沒有,則將4存放進來,並令a指向4;如果已經有了,則直接將a指向這個地址。因此a值的改變不會影響到b的值。要注意這種數據的共享與兩個對象的引用同時指向一個對象的這種共享是不同的,因為這種情況a的修改並不會影響到b, 它是由編譯器完成的,它有利於節省空間。而一個對象引用變數修改了這個對象的內部狀態,會影響到另一個對象引用變數。
⑷ 編譯原理試題 幫忙答一下
你太會投機取巧了,建議你去考試網上學習一下
⑸ 誰能解釋一下java中的棧內存和堆內存
2.1 內存分配策略
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.這種分配策略要求程序代碼中不允許有可變數據結構(比如可變數組)的存在,也不允許有嵌套或者遞歸的結構出現,因為它們都會導致編譯程序無法計算準確的存儲空間需求.
棧式存儲分配也可稱為動態存儲分配,是由一個類似於堆棧的運行棧來實現的.和靜態存儲分配相反,在棧式存儲方案中,程序對數據區的需求在編譯時是完全未知的,只有到運行的時候才能夠知道,但是規定在運行中進入一個程序模塊時,必須知道該程序模塊所需的數據區大小才能夠為其分配內存.和我們在數據結構所熟知的棧一樣,棧式存儲分配按照先進後出的原則進行分配。
靜態存儲分配要求在編譯時能知道所有變數的存儲要求,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時模塊入口處都無法確定存儲要求的數據結構的內存分配,比如可變長度串和對象實例.堆由大片的可利用塊或空閑塊組成,堆中的內存可以按照任意順序分配和釋放.
2.2 堆和棧的比較
上面的定義從編譯原理的教材中總結而來,除靜態存儲分配之外,都顯得很呆板和難以理解,下面撇開靜態存儲分配,集中比較堆和棧:
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.而這種不同又主要是由於堆和棧的特點決定的:
在編程中,例如C/C++中,所有的方法調用都是通過棧來進行的,所有的局部變數,形式參數都是從棧中分配內存空間的。實際上也不是什麼分配,只是從棧頂向上用就行,就好像工廠中的傳送帶(conveyor belt)一樣,Stack Pointer會自動指引你到放東西的位置,你所要做的只是把東西放下來就行.退出函數的時候,修改棧指針就可以把棧中的內容銷毀.這樣的模式速度最快,當然要用來運行程序了.需要注意的是,在分配的時候,比如為一個即將要調用的程序模塊分配數據區時,應事先知道這個數據區的大小,也就說是雖然分配是在程序運行時進行的,但是分配的大小多少是確定的,不變的,而這個"大小多少"是在編譯時確定的,不是在運行時.
堆是應用程序在運行的時候請求操作系統分配給自己內存,由於從操作系統管理的內存分配,所以在分配和銷毀時都要佔用時間,因此用堆的效率非常低.但是堆的優點在於,編譯器不必知道要從堆里分配多少存儲空間,也不必知道存儲的數據要在堆里停留多長的時間,因此,用堆保存數據時會得到更大的靈活性。事實上,面向對象的多態性,堆內存分配是必不可少的,因為多態變數所需的存儲空間只有在運行時創建了對象之後才能確定.在C++中,要求創建一個對象時,只需用new命令編制相關的代碼即可。執行這些代碼時,會在堆里自動進行數據的保存.當然,為達到這種靈活性,必然會付出一定的代價:在堆里分配存儲空間時會花掉更長的時間!這也正是導致我們剛才所說的效率低的原因,看來列寧同志說的好,人的優點往往也是人的缺點,人的缺點往往也是人的優點(暈~).
2.3 JVM中的堆和棧
JVM是基於堆棧的虛擬機.JVM為每個新創建的線程都分配一個堆棧.也就是說,對於一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法.我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在線程的Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變數,中間計算過程和其他數據.這個幀在這里和編譯原理中的活動紀錄的概念是差不多的.
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進後出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,並由應用所有的線程共享.跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分配,也就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而已。
⑹ 編譯原理中常見的存儲分配策略有哪些
靜態存儲分配策略和動態存儲分配策略,動態存儲分配時可採用棧式動態存儲分配和堆式動態存儲分配
⑺ java中,棧和堆分別是什麼創建的最好詳細點。。
棧與堆都是Java用來在Ram中存放數據的地方。與C++不同,Java自動管理棧和堆,程序員不能直接地設置棧或堆。
Java 的堆是一個運行時數據區,類的(對象從中分配空間。這些對象通過new、newarray、anewarray和multianewarray等指令建立,它們不需要程序代碼來顯式的釋放。堆是由垃圾回收來負責的,堆的優勢是可以動態地分配內存大小,生存期也不必事先告訴編譯器,因為它是在運行時動態分配內存的,Java的垃圾收集器會自動收走這些不再使用的數據。但缺點是,由於要在運行時動態分配內存,存取速度較慢。
棧的優勢是,存取速度比堆要快,僅次於寄存器,棧數據可以共享。但缺點是,存在棧中的數據大小與生存期必須是確定的,缺乏靈活性。棧中主要存放一些基本類型的變數(,int, short, long, byte, float, double, boolean, char)和對象句柄。
棧有一個很重要的特殊性,就是存在棧中的數據可以共享。假設我們同時定義:
int a = 3;
int b = 3;
編譯器先處理int a = 3;首先它會在棧中創建一個變數為a的引用,然後查找棧中是否有3這個值,如果沒找到,就將3存放進來,然後將a指向3。接著處理int b = 3;在創建完b的引用變數後,因為在棧中已經有3這個值,便將b直接指向3。這樣,就出現了a與b同時均指向3的情況。這時,如果再令a=4;那麼編譯器會重新搜索棧中是否有4值,如果沒有,則將4存放進來,並令a指向4;如果已經有了,則直接將a指向這個地址。因此a值的改變不會影響到b的值。要注意這種數據的共享與兩個對象的引用同時指向一個對象的這種共享是不同的,因為這種情況a的修改並不會影響到b, 它是由編譯器完成的,它有利於節省空間。而一個對象引用變數修改了這個對象的內部狀態,會影響到另一個對象引用變數。
String是一個特殊的包裝類數據。可以用:
String str = new String("abc");
String str = "abc";
兩種的形式來創建,第一種是用new()來新建對象的,它會在存放於堆中。每調用一次就會創建一個新的對象。
而第二種是先在棧中創建一個對String類的對象引用變數str,然後查找棧中有沒有存放"abc",如果沒有,則將"abc"存放進棧,並令str指向」abc」,如果已經有」abc」 則直接令str指向「abc」。
比較類裡面的數值是否相等時,用equals()方法;當測試兩個包裝類的引用是否指向同一個對象時,用==,下面用例子說明上面的理論。
String str1 = "abc";
String str2 = "abc";
System.out.println(str1==str2); //true
可以看出str1和str2是指向同一個對象的。
String str1 =new String ("abc");
String str2 =new String ("abc");
System.out.println(str1==str2); // false
用new的方式是生成不同的對象。每一次生成一個。
因此用第二種方式創建多個」abc」字元串,在內存中其實只存在一個對象而已. 這種寫法有利與節省內存空間. 同時它可以在一定程度上提高程序的運行速度,因為JVM會自動根據棧中數據的實際情況來決定是否有必要創建新對象。而對於String str = new String("abc");的代碼,則一概在堆中創建新對象,而不管其字元串值是否相等,是否有必要創建新對象,從而加重了程序的負擔。
另一方面, 要注意: 我們在使用諸如String str = "abc";的格式定義類時,總是想當然地認為,創建了String類的對象str。擔心陷阱!對象可能並沒有被創建!而可能只是指向一個先前已經創建的對象。只有通過new()方法才能保證每次都創建一個新的對象。由於String類的immutable性質,當String變數需要經常變換其值時,應該考慮使用StringBuffer類,以提高程序效率。
java中內存分配策略及堆和棧的比較
2.1 內存分配策略
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.這種分配策略要求程序代碼中不允許有可變數據結構(比如可變數組)的存在,也不允許有嵌套或者遞歸的結構出現,因為它們都會導致編譯程序無法計算準確的存儲空間需求.
棧式存儲分配也可稱為動態存儲分配,是由一個類似於堆棧的運行棧來實現的.和靜態存儲分配相反,在棧式存儲方案中,程序對數據區的需求在編譯時是完全未知的,只有到運行的時候才能夠知道,但是規定在運行中進入一個程序模塊時,必須知道該程序模塊所需的數據區大小才能夠為其分配內存.和我們在數據結構所熟知的棧一樣,棧式存儲分配按照先進後出的原則進行分配。
靜態存儲分配要求在編譯時能知道所有變數的存儲要求,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時模塊入口處都無法確定存儲要求的數據結構的內存分配,比如可變長度串和對象實例.堆由大片的可利用塊或空閑塊組成,堆中的內存可以按照任意順序分配和釋放.
2.2 堆和棧的比較
上面的定義從編譯原理的教材中總結而來,除靜態存儲分配之外,都顯得很呆板和難以理解,下面撇開靜態存儲分配,集中比較堆和棧:
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.而這種不同又主要是由於堆和棧的特點決定的:
在編程中,例如C/C++中,所有的方法調用都是通過棧來進行的,所有的局部變數,形式參數都是從棧中分配內存空間的。實際上也不是什麼分配,只是從棧頂向上用就行,就好像工廠中的傳送帶(conveyor belt)一樣,Stack Pointer會自動指引你到放東西的位置,你所要做的只是把東西放下來就行.退出函數的時候,修改棧指針就可以把棧中的內容銷毀.這樣的模式速度最快, 當然要用來運行程序了.需要注意的是,在分配的時候,比如為一個即將要調用的程序模塊分配數據區時,應事先知道這個數據區的大小,也就說是雖然分配是在程序運行時進行的,但是分配的大小多少是確定的,不變的,而這個"大小多少"是在編譯時確定的,不是在運行時.
堆是應用程序在運行的時候請求操作系統分配給自己內存,由於從操作系統管理的內存分配,所以在分配和銷毀時都要佔用時間,因此用堆的效率非常低.但是堆的優點在於,編譯器不必知道要從堆里分配多少存儲空間,也不必知道存儲的數據要在堆里停留多長的時間,因此,用堆保存數據時會得到更大的靈活性。事實上,面向對象的多態性,堆內存分配是必不可少的,因為多態變數所需的存儲空間只有在運行時創建了對象之後才能確定.在C++中,要求創建一個對象時,只需用 new命令編制相關的代碼即可。執行這些代碼時,會在堆里自動進行數據的保存.當然,為達到這種靈活性,必然會付出一定的代價:在堆里分配存儲空間時會花掉更長的時間!這也正是導致我們剛才所說的效率低的原因,看來列寧同志說的好,人的優點往往也是人的缺點,人的缺點往往也是人的優點(暈~).
2.3 JVM中的堆和棧
JVM是基於堆棧的虛擬機.JVM為每個新創建的線程都分配一個堆棧.也就是說,對於一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法.我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在線程的 Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變數,中間計算過程和其他數據.這個幀在這里和編譯原理中的活動紀錄的概念是差不多的.
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進後出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,並由應用所有的線程共享.跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分配,也就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而已。
⑻ java中的,創建對象時, new是在內存的堆(heap)上為對象開辟空間, aPerson存在於內存的棧(stack)中。
棧是存放函數調用過程中的臨時變數的! 堆是程序運行過程中動態申請的內存的存放處的!比如new的對象就在堆上
在函數中定義的一些基本類型的變數和對象的引用變數都是在函數的棧內存中分配。當在一段代碼塊中定義一個變數時,java就在棧中為這個變數分配內存空間,當超過變數的作用域後,java會自動釋放掉為該變數分配的內存空間,該內存空間可以立刻被另作他用。
堆內存用於存放由new創建的對象和數組。在堆中分配的內存,由java虛擬機自動垃圾回收器來管理。在
數組和對象在沒有引用變數指向它的時候,才變成垃圾,不能再被使用,但是仍然占著內存,在隨後的一個不確定的時間被垃圾回收器釋放掉。這個也是java比較占內存的主要原因。
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.
棧式存儲分配也可稱為動態存儲分配,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時模塊入口處都無法確定存儲要求的數據結構的內存分配。
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.
⑼ 常見的存儲分配策略有幾種它們都適合於什麼性質的語言
1 靜態分配若在編譯階段就能確定源程序中各個數據實體的存儲空間大小,則可以採用較簡單的靜態存儲管理。適合靜態管理的語言應具備條件:數組上下界是常數、過程調用不允許遞歸、不允許動態建立數據實體。
2棧式分配適用於允許遞歸調用的程序設計語言
3 堆式分配對於允許程序在運行時為變數動態申請和釋放存儲空間的語言,採用堆式分配是最有效的解決方案