導航:首頁 > 源碼編譯 > 周邊搜索演算法

周邊搜索演算法

發布時間:2022-11-20 20:54:35

『壹』 高分求演算法:尋找與特定對象距離最近的對象

用現在的ID,X,Y三個元素來找最近點的話無論什麼辦法,都至少要與每個點進行一次距離的判斷,比較X或者Y也好,計算距離(當然這個距離是不用開平方的,與其他所有點的距離都不開平方也能比較相對的距離長短)也好,所以如果只有這三個元素的話,其實再怎麼改也不會有太大的優化的。

最好還是添加一些輔助信息,比較常用的就是以劃分網格的方法,將所有點分派在不同的網格中,然後以網格為基礎找最近點,這樣的話就要加一個網格的結構(以空間換時間),裡面存放的就是屬於這個網格的點的ID,通過編號規則可以很快的找最近的網格,然後再找裡面的點,這樣可以提高點查找速度。

呵呵,不好意思,沒想清楚就寫了:P,改一下,改一下,再加一步就好了

1.給點添加一個所屬網格的信息:
Class A
{
public int ID;
public int X;
public int Y;
publci int Index;//所屬網格編號
}
2.構造一個點鏈表,這是為了減少空間和方便處理而加的,後面的演算法里會感覺到用處
(為每個點對象建立一個點鏈表節點)
Class I
{
public A *pAObject; //指向一個點對象
publci I *pNextA; //指向下一個
}
3.構件一個網格信息結構
Class G
{
public int ID; //網格編號
public I *pAObjects; //指向一個點鏈表(至於這個是帶頭節點還是不帶頭節點的都一樣啦)
//這里用鏈表比較好
//第一,因為點可移動,那麼點對象個數可以隨意,可以發揮鏈表的擴展性
//第二,不需要取中間節點,也就沒有用到數組的長處
}
4.構建網格,比如以1000為長度(長度可以自己定義,關鍵是平衡空間和速度關系),建立正方形的網格,那麼(0,0)到(1000000,1000000)就是有1000*1000個網格(在給網格編號的時候最好有規律,那麼就能通過List或者其他數組容器的下標來獲得網格信息)
5.添加點的時候,先判斷屬於哪個網格,然後在點信息中添加網格編號,同時構建對應的點鏈表節點,並添加到所屬網格的鏈表中
6.最後就是查詢點了,首先獲得出發點中的所屬網格信息,看這個網格中是否有其他點:有,則一個個的判斷距離(距離的平方),那麼最近點一定在這些點裡面(如果點還是太多,那麼就考慮縮小網格的范圍);沒有,那就找所屬網格周邊8個網格中是否有點,有,則再找最近點,沒有就再往外擴(如果感覺網格太多,可以加大網格的范圍)
7.以找到的最近點到出發點的距離為基準,看看出發點到周邊網格在這個距離內會接觸到的(沒有在6中遍歷過的)有幾個網格,把這些網格中的點再查看有沒有更近的就行了

注:
1.如果還要優化就是加大網格的層次,可以用多層網格,這就會更復雜一點
2.在網格信息結構(G)中,因為點會移動,那麼刪點鏈表節點會有一個查找過程,如果覺得這個慢,那麼就在點對象結構體中加一個所屬點鏈表的指針:
class I;
Class A
{
public int ID;
public int X;
public int Y;
publci int Index;//所屬網格編號
publci I *pI;
}
....

呵呵,看了lipai006的回答,想了下似乎也是可以實現的,只要多花點內存就可以達到比較好的速度了,而且也不需要真的從X坐標出發這樣慢慢的以扇形擴展了啦,通過做一些輔助結構,就直接可以從出發點的X坐標出發,找同X不同Y中Y坐標與出發點最近的就行啦,循環結束條件就是X的擴展距離已經大於當前最小距離,因為再往外也肯定比當前最小距離大了。這個方法也就是要更復雜一些的輔助結構做索引,添加點的時候也要多做些事情,而且實現上的代碼相對網格方法復雜一些,但查找速度應該比網格會快一點,因為畢竟是直接找點去了,其實網格方法就是把一批點的X,Y坐標看成是一樣的,這樣先過濾一批而已,是個速度與復雜度的折中。

xx_lzj:劃分區域的目的就是為了使每個區域內的點不能太多,根據我的結構,每個區域有沒有點,一個bool判斷就夠了,不會存在太稀疏影響效率的事情,不過最壞的情況的確會退化到遍歷整個點空間,所以這個方法的時間復雜度仍然是O(n)。
你的方法其實和lipai006說的原理是差不多的(如果我對你們鏈表結構的猜想准確的話),無非就是通過X,Y坐標形成一個二維雙向鏈表,在形成這個鏈表的過程會比網格相對復雜一點,而且也不是像你想的只要判斷8個點就夠的,當只有一個點在中間,其他點分布成以這個點為圓心的圓周上時,按照貼主的要求,難道只有8個最近點嗎??在這個情況下,你的最壞復雜度還是O(n),但就如我說過的,這個方法的平均時間復雜度在參數上是會比網格的低一點,但是演算法本身的代碼復雜度上會高一點,而且在插入點的過程中的時間消耗會大一點而已。我覺得這是一個整體的過程,不能為了查找的快速犧牲太多其他的時間。
*************
xx_lzj:不好意思,你的鏈表我還有些不明白的地方:1.二維雙向鏈表每個節點有4個指針,你能否把這4個指針如何獲得的說一下,最好不要取邊界線上的點,取中間的一個點進行介紹。2.對於初始化和修改點坐標的時候,現有數據如果是鏈表結構(不是數組),如何能不依靠其他輔助數據進行折半查找?3.修改某個點坐標之後,根據你的鏈表結構,我感覺不是刪除、插入節點這么簡單的,能不能具體點說明。

『貳』 有什麼方式可以取得到周邊有多少商戶

php可以獲取附近的商家。
操作方法如下:Shop表存儲欄位 Lat, Lng 現在使用方案為 通過 sql 語句進行距離的計算 之後 order by limit 進行分頁 但在SQL內進行計算,導致慢查詢. 目前 有兩種方案
A方案 : 獲取用戶當前的經緯度 通過演算法找到每條記錄所在點的經緯度周圍的一個大概范圍,比方說正方形的四個點,然後使用mysql的空間計算
B方案 :通過 Geohash 演算法 算出附近的商家 前端通過介面獲取數據進行分頁,採用以上兩種方案時,均為一次性拉取出附近商戶的數據,之後進行距離的計算,根據距離的排序生成最終數組,此時數據分頁 應該採用 根據數組的索引 計算偏移量進行分頁的操作。
補充 同時要求 能夠根據城市 和 區域 進行搜索 用關系型資料庫的話,給經緯度加上索引。附近的演算法可以從經緯度入手,以用戶的經緯度(x,y)為基準,查詢的范圍為((x+/-),y(+/-)), 擴大搜索范圍就是對x y的范圍的加大。 使用ElasticSearch 或者 Solr之類支持空間的搜索引擎。 之前寫過相關的Demo: Django ElasticSearch Ionic 打造 GIS 移動應用 —— 架構設計

『叄』 幾種常見的查找演算法之比較

二分法平均查找效率是O(logn),但是需要數組是排序的。如果沒有排過序,就只好先用O(nlogn)的預處理為它排個序了。而且它的插入比較困難,經常需要移動整個數組,所以動態的情況下比較慢。

哈希查找理想的插入和查找效率是O(1),但條件是需要找到一個良好的散列函數,使得分配較為平均。另外,哈希表需要較大的空間,至少要比O(n)大幾倍,否則產生沖突的概率很高。

二叉排序樹查找也是O(logn)的,關鍵是插入值時需要做一些處理使得它較為平衡(否則容易出現輕重的不平衡,查找效率最壞會降到O(n)),而且寫起來稍微麻煩一些,具體的演算法你可以隨便找一本介紹數據結構的書看看。當然,如果你用的是c語言,直接利用它的庫類型map、multimap就可以了,它是用紅黑樹實現的,理論上插入、查找時間都是O(logn),很方便,不過一般會比自己實現的二叉平衡樹稍微慢一些。

『肆』 百度搜索引擎的演算法是怎樣的

衡量網頁質量的維度
網路搜索引擎在衡量網頁質量時,會從以下三個維度綜合考慮給出一個質量打分。下面會一一介紹這些影響網頁質量判斷的維度特徵:
• 內容質量
• 瀏覽體驗
• 可訪問性
一個訪問流暢,內容質量高且瀏覽體驗好的網頁具有較高的質量;反之,任何一個維度出現問題,都會影響網頁的整體質量。下面我們具體介紹下這三個維度。

衡量網頁質量的維度——內容質量

網頁主體內容是網頁的價值所在,是滿足用戶需求的前提基礎。網路搜索引擎評價網頁內容質量主要看其主體內容的好壞,以及主體內容是否可以讓用戶滿意。 不同類型網頁的主體內容不同,網路搜索引擎判斷不同網頁的內容價值時,需要關注的點也有區別,如:
• 首頁:導航鏈接和推薦內容是否清晰、有效。
• 文章頁:能否提供清晰完整的內容,圖文並茂更佳。
• 商品頁:是否提供了完整真實的商品信息和有效的購買入口。
• 問答頁:是否提供了有參考價值的答案。
• 下載頁:是否提供下載入口,是否有許可權限制,資源是否有效。
• 文檔頁:是否可供用戶閱讀,是否有許可權限制。
• 搜索結果頁:搜索出來的結果是否與標題相關。

網路搜索引擎考量網頁內容質量的維度非常多,最為重要的是:成本;內容完整;信息真實有效以及安全。下面我們通過舉例來感受一下網路搜索引擎是如何對網頁的內容質量進行分類的,請站長對比自己站點的頁面,站在搜索引擎和用戶的角度為自己打分:
1、內容質量好:
網路搜索引擎認為內容質量好的網頁,花費了較多時間和精力編輯,傾注了編者的經驗和專業知識;內容清晰、完整且豐富;資源有效且優質;信息真實有效;安全無毒;不含任何作弊行為和意圖,對用戶有較強的正收益。對這部分網頁,網路搜索引擎會提高其展現在用戶面前的機率。例如:
• 專業醫療機構發布的內容豐富的醫療專題頁面;
• 資深工程師發布的完整解決某個技術問題的專業文章;
• 專業視頻網站上,播放清晰流暢的正版電影或影視全集頁面;
• 知名B2C網站上,一個完整有效的商品購買頁;
• 權威新聞站原創或經過編輯整理的熱點新聞報道;
• 經過網友認真編輯,內容豐富的詞條;
• 問答網站內,回答的內容可以完美解決提問者的問題。

實例參考:

示例

內容質量

說明

case 3.1.1-1



專業醫療網站發布的豐富醫療專題頁面

case 3.1.1-2



資深工程師發布的完整解決某個技術問題的專業文章

case 3.1.1-3



專業視頻網站上,播放清晰流暢的正版影視全集頁面

case 3.1.1-4



京東的一個完整有效的商品購買頁

case 3.1.1-5



權威新聞站原創的熱點新聞的報道

case 3.1.1-6



經過網友認真編輯,內容豐富的網路詞條

case3.1.1-7



網路知道上,完美解決用戶問題的問答頁

2、內容質量中:
內容質量中等的網頁往往能滿足用戶需求,但未花費較多時間和精力進行製作編輯,不能體現出編者的經驗和專業知識;內容完整但並不豐富;資源有效但質量欠佳;信息雖真實有效但屬採集得來;安全無毒;不含作弊行為和意圖。在互聯網中,中等質量網頁其實是一個比較大的數量集合,種類面貌也繁雜多樣,網路搜索引擎在評價這類網頁時往往還要考慮其它非常多因素。在這里,我們僅部分舉例來讓各位感受一下:
• 論壇類網站里一個普通的帖子;
• 一個普通的問答網頁;
• 沒有進行任何編輯,直接轉載其它網站的新聞;
• 無版權信息的普通電影播放頁
• 採集知名小說網站的盜版小說頁。

實例參考:

示例

內容質量

說明

case 3.1.2-1



網易直接轉載了中國新聞網的一篇新聞。

case 3.1.2-2



文庫上網友上傳的「國慶放假安排」新聞

case 3.1.2-3



採集起點小說網的盜版小說站

case 3.1.2-4



網路貼吧里一個普通的帖子

3、內容質量差:
網路搜索引擎認為主體內容信息量較少,或無有效信息、信息失效過期的都屬於內容質量差網頁,對用戶沒有什麼實質性的幫助,應該減少其展現的機會。同時,如果一個網站內該類網頁的佔比過大,也會影響網路搜索引擎對站點的評級,尤其是UGC網站、電商網站、黃頁網站要尤其重視對過期、失效網頁的管理。例如:
• 已下架的商品頁,或已過期的團購頁;
• 已過有效期的招聘、交易頁面;
• 資源已失效,如視頻已刪除、軟體下載後無法使用等。

4、沒有內容質量可言:
沒有內容質量可言的網頁指那些製作成本很低,粗製濫造;從別處採集來的內容未經最起碼的編輯整理即放置線上;掛木馬等病毒;含有作弊行為或意圖;完全不能滿足用戶需求,甚至含有欺騙內容的網頁。例如:
• 內容空短,有很少量的內容,卻不能支撐頁面的主要意圖;
• 問答頁有問無答,或回答完全不能解決問題;
• 站內搜索結果頁,但沒有給出相關信息

除上述網頁外,欺騙用戶和搜索引擎的網頁在無內容質量可言集合里占很高比例。網路搜索引擎對作弊網頁的定義是:不以滿足用戶需求為目的,通過不正當手段欺騙用戶和搜索引擎從而獲利的網頁。目前互聯網上這部分網頁還屬少數,但作弊網頁的價值是負向的,對用戶的傷害非常大,對這類網頁,搜索引擎持堅決打擊態度。

衡量網頁質量的維度——瀏覽體驗
不同質量的網頁帶給用戶的瀏覽體驗會有很大差距,一個優質的網頁給用戶的瀏覽體驗應該是正向的。用戶希望看到干凈、易閱讀的網頁,排版混亂、廣告過多會影響用戶對網頁主體內容的獲取。在網路搜索引擎網頁質量體系中,用戶對網頁主體內容的獲取成本與瀏覽體驗呈反比,即獲取成本越高,瀏覽體驗越低。面對內容質量相近的網頁,瀏覽體驗佳者更容易獲得更高的排位,而對於瀏覽體驗差的網頁,網路搜索引擎會視情況降低其展現的機率甚至拒絕收錄。
影響用戶瀏覽體驗好壞的因素很多,目前網路搜索引擎主要從內容排版、廣告影響兩方面對網頁進行考量:
內容排版:用戶進入網頁第一眼看到的就是內容排版,排版決定了用戶對網頁的第一印象,也決定了用戶對內容獲取的成本。
廣告影響:網路搜索引擎理解網站的生存發展需要資金支持,對網頁上放置正當廣告持支持態度。網頁應該以滿足用戶需求為主旨,最佳狀態即「主體內容與廣告一起滿足用戶需求,內容為主,廣告為輔」,而不應讓廣告成為網頁主體。

下面我們通過舉例來感受一下網路搜索引擎是如何對網頁的瀏覽體驗進行分類的,站長可以據此對比檢驗自己站點的瀏覽體驗如何:
1、瀏覽體驗好:
頁面布局合理,用戶獲取主體內容成本低,一般具有以下特徵:
• 排版合理,版式美觀,易於閱讀和瀏覽;
• 用戶需要的內容占據網頁最重要位置;
• 能夠通過頁面標簽或頁面布局十分清楚地區分出哪些是廣告;
• 廣告不搶佔主體內容位置,不阻礙用戶對主要內容的獲取;

實例參考:

示例

瀏覽體驗

說明

case 3.2.1-1



招聘、房產等網站首頁也有很多廣告,但都是招聘相關的,瀏覽體驗是ok的。

case 3.2.1-2



文章頁,頁面布局合理,無廣告,排版好,結構合理

case 3.2.1-3



游戲首頁,排版美觀,布局合理,無廣告,瀏覽體驗優

2、瀏覽體驗差:
頁面布局和廣告放置影響了用戶對主體內容的獲取,提高了用戶獲取信息的成本,令用戶反感。包括但不僅限於以下情況:
• 正文內容不換行或不分段,用戶閱讀困難;
• 字體和背景顏色相近,內容辨別困難;
• 頁面布局不合理,網頁首屏看不到任何有價值的主體內容;
• 廣告遮擋主體內容;或者在通用解析度下,首屏都是廣告,看不到主體內容;
• 彈窗廣告過多;
• 影響閱讀的浮動廣告過多
• 點擊鏈接時,出現預期之外的彈窗;
• 廣告與內容混淆,不易區分;

衡量網頁質量的維度——可訪問性
用戶希望快速地從搜索引擎獲取到需要的信息,網路搜索引擎盡可能為用戶提供能一次性直接獲取所有信息的網頁結果。網路搜索引擎認為不能直接獲取到主體內容的網頁對用戶是不友好的,會視情況調整其展現機率。

網路搜索引擎會從正常打開、許可權限制、有效性三方面判斷網頁的可訪問性,對於可以正常訪問的網頁,可以參與正常排序;對於有許可權限制的網頁,再通過其它維度對其進行觀察;對於失效網頁,會降權其展現機制甚至從資料庫中刪除。

1、可正常訪問的網頁
無許可權限制,能直接訪問所有主體內容的網頁。

2、有許可權限制的網頁
此類網頁分為兩種:打開許可權和資源獲取許可權
1)打開許可權:指打開網頁都需要登錄許可權,沒有許可權完全無法看到具體內容,普通用戶無法獲取或獲取成本很高,網路搜索引擎會降低其展現機率。不包括以登錄為主要功能的網頁。
2)資源獲取許可權:指獲取網頁主要內容,如文檔、軟體、視頻等,需要許可權或者需要安裝插件才能獲得完整內容。此時會分三種情況:
• 提供優質、正版內容的網站,由於內容建設成本很高,盡管查看全文或下載時需要許可權或安裝插件,但屬於用戶預期之內,網路搜索引擎也不認為許可權行為對用戶造成傷害,給予與正常可訪問頁面相同的對待。
• 對於一些非優質、非正版的資源,來自於用戶轉載甚至機器採集,本身成本較低,內容也不獨特,用戶獲取資源還有許可權限制——需要用戶注冊登錄或者付費查看,網路搜索引擎會根據具體情況決定是否調整其展現。
• 還有一些視頻、下載資源頁,也許自身資源質量並不差,但需要安裝非常冷門的插件才能正常訪問,比如要求安裝「xx大片播放器」,網路搜索引擎會懷疑其有惡意傾向。

實例參考:

示例

可訪問性

說明

case 3.2-1



CNKI上的一篇論文,收費才能下載,但有版權,瀏覽體驗好

case 3.2-2



優酷上一部新電影,需要付費才能觀看,瀏覽體驗好。

case 3.2-3



內容是來,但是需要登錄才能看更多

case 3.2-4



入黨申請書,本身就是轉載的,網上到處都是,但這個頁面仍然要求收費才能下載。

3、失效網頁
往往指死鏈和主體資源失效的網頁。網路搜索引擎認為這部分網頁無法提供有價值信息,如果站點中此類網頁過多,也會影響網路搜索引擎對其的收錄和評級。建議站長對此類網頁進行相應設置,並及時登錄網路站長平台,使用死鏈提交工具告知網路搜索引擎。
失效網頁包括但不僅限於:
• 404、403、503等網頁;
• 程序代碼報錯網頁;
• 打開後提示內容被刪除,或因內容已不存在跳轉到首頁的網頁;
• 被刪除內容的論壇帖子,被刪除的視頻頁面(多出現在UGC站點)

具體請參閱《網路搜索引擎網頁質量白皮書》,望採納!

『伍』 演算法 地圖上如何搜索一個點附近的點

這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。

在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。

『陸』 深度優先搜索法和廣度優先搜索法

深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。在深度優先搜索中,對於最新發現的結點,如果它還有以此為起點而未搜過的邊,就沿著邊繼續搜索下去。當結點v的所有邊都已被探尋過,搜索將回溯到發現結點v有那條邊的始結點。這一過程一直進行到已發現從源結點可達的所有結點為止。如果還存在未被發現的結點,則選擇其中一個作為源結點並重復以上過程,整個過程反復進行直到所有結點都被發現為止。

深度優先搜索基本演算法如下{遞歸演算法}:
PROCEDURE dfs_try(i);
FOR i:=1 to maxr DO
BEGIN
IF 子結點 mr 符合條件 THEN
BEGIN
產生的子結點mr入棧;
IF 子結點mr是目標結點
THEN 輸出
ELSE dfs_try(i+1);
棧頂元素出棧;
END;
END; 寬度優先搜索演算法(又稱廣度優先搜索演算法)是最簡單的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。Dijksta單源最短路徑演算法和Prim最小生成樹演算法都採用了與寬度優先搜索類似的思想。
寬度優先搜索的核心思想是:從初始結點開始,應用算符生成第一層結點,檢查目標結點是否在這些後繼結點中,若沒有,再用產生式規則將所有第一層的結點逐一擴展,得到第二層結點,並逐一檢查第二層結點中是否包含目標結點。若沒有,再用算符逐一擴展第二層所有結點……,如此依次擴展,直到發現目標結點為止。

寬度優先搜索基本演算法如下:
list[1]:=source; {加入初始結點,list為待擴展結點的表}
head:=0; {隊首指針}
foot:=1; {隊尾指針}
REPEAT
head:=head+1;
FOR x:=1 to 規則數 DO
BEGIN
根據規則產生新結點nw;
IF not_appear(nw,list) THEN {若新結點隊列中不存在,則加到隊尾}
BEGIN
foot:=foot+1;
list[foot]:=nw;
list[foot].father:=head;
IF list[foot]=目標結點 THEN 輸出;
END;
END;
UNTIL head>foot; {隊列為空表明再無結點可擴展}

『柒』 10個常用演算法

原理:
二分法查找,也稱為折半法,是一種在有序數組中查找特定元素的搜索演算法。

一般步驟:
(1)確定該區間的中間位置K;
(2)將查找的值T與array[k]比較。
若相等,查找成功返回此位置;否則確定新的查找區域,繼續二分查找。每一次查找與中間值比較,可以確定是否查找成功,不成功當前查找區間將縮小一半,遞歸查找即可。

原理:
一種通過重復將問題分解為同類的子問題而解決問題的方法

典型例子:
斐波那契數列
描述: 斐波那契數列 指的是這樣一個數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契數列") 自然中的斐波那契數列,這個數列從第3項開始,每一項都等於前兩項之和。

解決方式:

原理:
在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。
但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。

解決問題一般步驟:
1、 針對所給問題,定義問題的解空間,它至少包含問題的一個(最優)解。

2 、確定易於搜索的解空間結構,使得能用回溯法方便地搜索整個解空間 。

3 、以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索。

典型例子:
八皇後問題
描述:在8×8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問有多少種擺法。

解決方式: https://blog.csdn.net/weixin_41865447/article/details/80034433

概念:
將雜亂無章的數據元素,通過一定的方法按關鍵字順序排列的過程叫做排序。

分類:
非穩定排序演算法:快速排序、希爾排序、堆排序、直接選擇排序
穩定的排序演算法:基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序

十個常用排序演算法

利用計算機的高性能來有目的的窮舉一個問題解空間的部分或所有的可能情況,從而求出問題的解的一種方法。

分類:
枚舉演算法、深度優先搜索、廣度優先搜索、A*演算法、回溯演算法、蒙特卡洛樹搜索、散列函數等演算法。

將一個數據轉換為一個標志,這個標志和源數據的每一個位元組都有十分緊密的關系。

很難找到逆向規律

只要符合散列思想的演算法都可以被稱為是Hash演算法

對不同的關鍵字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),這種現象稱為 碰撞

原理
在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在 某種意義上的局部最優解
從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止。

一種近似演算法

一般步驟:
1、建立數學模型來描述問題;
2、把求解的問題分成若干個子問題;
3、對每一子問題求解,得到子問題的局部最優解;
4、把子問題的解局部最優解合成原來解問題的一個解。

典型例子:
0/1背包問題
馬踏棋盤
均分紙牌

例題: https://www.cnblogs.com/hust-chen/p/8646009.html

概念:
分治演算法的基本思想是將一個規模為N的問題分解為K個規模較小的子問題,這些子問題相互獨立且與原問題性質相同。求出子問題的解,就可得到原問題的解。即一種分目標完成程序演算法,簡單問題可用二分法完成。

一般步驟:
(1)分解,將要解決的問題劃分成若干規模較小的同類問題;
(2)求解,當子問題劃分得足夠小時,用較簡單的方法解決;
(3)合並,按原問題的要求,將子問題的解逐層合並構成原問題的解。

典型例子:
排序中:歸並排序、堆排序、快速排序;
實例:找偽幣、求最值、棋盤覆蓋

https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297

概念:
用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。

動態規劃一般可分為線性動規,區域動規,樹形動規,背包動規四類。

舉例:
線性動規:攔截導彈,合唱隊形,挖地雷,建學校,劍客決斗等;
區域動規:石子合並, 加分二叉樹,統計單詞個數,炮兵布陣等;
樹形動規:貪吃的九頭龍,二分查找樹,聚會的歡樂,數字三角形等;
背包問題:01背包問題,完全背包問題,分組背包問題,二維背包,裝箱問題,擠牛奶(同濟)等;

應用實例:
最短路徑問題 ,項目管理,網路流優化等;

https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin

概念:
在一個給定的字元文本內搜尋出自己想要找的一個字元串,平常所用的各種文本編輯器里的ctrl+F大多就是使用的這些字元匹配演算法。

分類:
KMP、BM、Sunday、Horspool、RK

參考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320

『捌』 百度地圖的路徑搜索演算法

這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。

在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。
深度優先搜索演算法的偽代碼如下:[7]
DFS(v) //訪問由v到達的所有頂點
Visited(v)=1;
for鄰接於v的每個頂點w do
if Visited(w)=0 then
DFS(w);
endif
endfor
end DFS
作為搜索演算法的一種,DFS對於尋找一個解的NP(包括NPC)問題作用很大。但是,搜索演算法畢竟是時間復雜度是O(n!)的階乘級演算法,它的效率比較低,在數據規模變大時,這種演算法就顯得力不從心了。[8]關於深度優先搜索的效率問題,有多種解決方法。最具有通用性的是剪枝,也就是去除沒有用的搜索分支。有可行性剪枝和最優性剪枝兩種。
BFS:對於解決最短或最少問題特別有效,而且尋找深度小,但缺點是內存耗費量大(需要開大量的數組單元用來存儲狀態)。
DFS:對於解決遍歷和求所有問題有效,對於問題搜索深度小的時候處理速度迅速,然而在深度很大的情況下效率不高。
3、A*演算法
1968年的一篇論文,「P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968」。[9]從此,一種精巧、高效的演算法——A*演算法問世了,並在相關領域得到了廣泛的應用。A* 演算法其實是在寬度優先搜索的基礎上引入了一個估價函數,每次並不是把所有可擴展的結點展開,而是利用估價函數對所有未展開的結點進行估價, 從而找出最應該被展開的結點,將其展開,直到找到目標節點為止。
A*演算法主要搜索過程偽代碼如下:[10]
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
算起點的估價值;
將起點放入OPEN表;
while(OPEN!=NULL) //從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
endif
for(當前節點n 的每個子節點X)
算X的估價值;
if(X in OPEN)
if(X的估價值小於OPEN表的估價值)
把n設置為X的父親;
更新OPEN表中的估價值; //取最小路徑的估價值;
endif
endif
if(X inCLOSE)
if( X的估價值小於CLOSE表的估價值)
把n設置為X的父親;
更新CLOSE表中的估價值;
把X節點放入OPEN //取最小路徑的估價值
endif
endif
if(X not inboth)
把n設置為X的父親;
求X的估價值;
並將X插入OPEN表中; //還沒有排序
endif
end for
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
end while(OPEN!=NULL)
保存路徑,即 從終點開始,每個節點沿著父節點移動直至起點,這就是你的路徑;
A *演算法分析:
DFS和BFS在展開子結點時均屬於盲目型搜索,也就是說,它不會選擇哪個結點在下一次搜索中更優而去跳轉到該結點進行下一步的搜索。在運氣不好的情形中,均需要試探完整個解集空間, 顯然,只能適用於問題規模不大的搜索問題中。而A*演算法與DFS和BFS這類盲目型搜索最大的不同,就在於當前搜索結點往下選擇下一步結點時,可以通過一個啟發函數來進行選擇,選擇代價最少的結點作為下一步搜索結點而跳轉其上。[11]A *演算法就是利用對問題的了解和對問題求解過程的了解, 尋求某種有利於問題求解的啟發信息, 從而利用這些啟發信息去搜索最優路徑.它不用遍歷整個地圖, 而是每一步搜索都根據啟發函數朝著某個方向搜索.當地圖很大很復雜時, 它的計算復雜度大大優於D ijks tr a演算法, 是一種搜索速度非常快、效率非常高的演算法.但是, 相應的A*演算法也有它的缺點.啟發性信息是人為加入的, 有很大的主觀性, 直接取決於操作者的經驗, 對於不同的情形要用不同的啟發信息和啟發函數, 且他們的選取難度比較大,很大程度上找不到最優路徑。
總結:
本文描述了最短路徑演算法的一些步驟,總結了每個演算法的一些優缺點,以及演算法之間的一些關系。對於BFS還是DFS,它們雖然好用,但由於時間和空間的局限性,以至於它們只能解決規模不大的問題,而最短或最少問題應該選用BFS,遍歷和求所有問題時候則應該選用DFS。至於A*演算法,它是一種啟發式搜索演算法,也是一種最好優先的演算法,它適合於小規模、大規模以及超大規模的問題,但啟發式搜索演算法具有很大的主觀性,它的優劣取決於編程者的經驗,以及選用的啟發式函數,所以用A*演算法編寫一個優秀的程序,難度相應是比較大的。每種演算法都有自己的優缺點,對於不同的問題選擇合理的演算法,才是最好的方法。
參考文獻:
[1]陳聖群,滕忠堅,洪親,陳清華.四種最短路徑演算法實例分析[J].電腦知識與技術(學術交流),2007(16):1030-1032
[2]劉樹林,尹玉妹.圖的最短路徑演算法及其在網路中的應用[J].軟體導刊,2011(07):51-53
[3]劉文海,徐榮聰.幾種最短路徑的演算法及比較[J].福建電腦,2008(02):9-12
[4]鄧春燕.兩種最短路徑演算法的比較[J].電腦知識與技術,2008(12):511-513
[5]王蘇男,宋偉,姜文生.最短路徑演算法的比較[J].系統工程與電子技術,1994(05):43-49
[6]徐鳳生,李天志.所有最短路徑的求解演算法[J].計算機工程與科學,2006(12):83-84
[7]李臣波,劉潤濤.一種基於Dijkstra的最短路徑演算法[J].哈爾濱理工大學學報,2008(03):35-37
[8]徐鳳生.求最短路徑的新演算法[J].計算機工程與科學,2006(02).
[9] YanchunShen . An improved Graph-based Depth-First algorithm and Dijkstra algorithm program of police patrol [J] . 2010 International Conference on Electrical Engineering and Automatic Control , 2010(3) : 73-77
[10]部亞松.VC++實現基於Dijkstra演算法的最短路徑[J].科技信息(科學教研),2008(18):36-37
[11] 楊長保,王開義,馬生忠.一種最短路徑分析優化演算法的實現[J]. 吉林大學學報(信息科學版),2002(02):70-74

『玖』 bfs演算法是什麼

廣度優先搜索演算法(英語:Breadth-First Search,縮寫為BFS),又譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。

簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。

作法

BFS是一種暴力搜索演算法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能地址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。

從演算法的觀點,所有因為展開節點而得到的子節點都會被加進一個先進先出的隊列中。

一般的實現里,其鄰居節點尚未被檢驗過的節點會被放置在一個被稱為open的容器中(例如隊列或是鏈表),而被檢驗過的節點則被放置在被稱為closed的容器中。


(9)周邊搜索演算法擴展閱讀:

廣度優先搜索演算法的應用

廣度優先搜索演算法能用來解決圖論中的許多問題,例如:

1、查找圖中所有連接組件(ConnectedComponent)。一個連接組件是圖中的最大相連子圖。

2、查找連接組件中的所有節點。

3、查找非加權圖中任兩點的最短路徑。

4、測試一圖是否為二分圖。

5、(Reverse)Cuthill–McKee演算法

『拾』 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

閱讀全文

與周邊搜索演算法相關的資料

熱點內容
手機程序加密有什麼作用 瀏覽:178
求黑馬程序員python教程 瀏覽:528
androidmvvm優缺點 瀏覽:894
unix下編譯庫文件 瀏覽:633
程序員的u盤 瀏覽:237
android根據經緯度獲取城市 瀏覽:564
python使用解釋器還是編譯器 瀏覽:358
以下關於有加密演算法及密鑰描述 瀏覽:219
linuxgethostname 瀏覽:416
程序員多數有對象 瀏覽:131
單片機延時程序計算 瀏覽:444
編譯原理語法翻譯 瀏覽:504
pr編譯出錯渲染存在偏移 瀏覽:262
如何製作自家的app 瀏覽:199
推薦一個解壓軟體rar解壓幫手 瀏覽:210
wd文檔加密器 瀏覽:748
伺服器上傳壓縮包一般是什麼格式 瀏覽:333
發送加密文件密碼幾位數 瀏覽:160
樹洞app怎麼樣 瀏覽:175
vivo編譯時間可以改么 瀏覽:150