1. 簡便演算法!
1:=2007*(3/2)*(4/3)*(5/4)┄*(2008/2007)
=1004
2:(1)相等(2)成立(4)1
2. 簡便演算法
這些個題都是利用加法的交換律和結合律進行計算,比較簡單。比如第一題。獎四分之3和4分之一相加得一。5/7-2/7等於這樣1+1=2。第二題將23/3分之一相加得一八分之5和8分之三相加得一,1+1=2。第三題3/5+2/5=19/5分之2+7/9=1,所以此題等於一又1/5,第四題,6/13+7/13,等於3/17+4/7=1這樣一減等於零。
3. 簡便計算方法
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道題目中,利用第一種方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等於5100加上2200等於6300
4. 簡便演算法怎麼算
你好,很高興為你解答
你忘了添加圖片了吧
提問問題時需要提供圖片信息
或者文字描述一下提問的內容
否則這邊無法進行判斷
重新添加內容吧
希望能夠幫助到你
5. 簡便演算法
6. 什麼是簡便演算法
簡便演算法...顧名思義就是:使演算法 變得簡單...舉個例子吧!
25×24=?就可以用簡便演算法 即:25×24=25×(4×6)=25×4×6=100×6=600
這樣的演算法就是 簡便演算法了 ...
..
7. 簡便演算法
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
8. 最簡單的計算方法