導航:首頁 > 源碼編譯 > 2021年提出的群體智能演算法

2021年提出的群體智能演算法

發布時間:2022-11-29 17:19:42

『壹』 西媒盤點2021年最有前途的十大新技術

新華社北京3月8日新媒體專電 西班牙《阿貝賽報》網站3月7日發表題為《2021年最有前途的十大技術》的文章,文章盤點了包括從TikTok演算法到多功能AI在內的十大2021年最有前途的新技術。全文摘編如下:

專家們一致認為,大流行加速了此前已經明確的一系列趨勢。遠程辦公是最明顯的,但是擁有重要解決方案的新技術的問世也是如此。有些技術早就出現,但無人問津,有些技術則是嶄新的。自2001年以來,麻省理工學院(MIT)的雜志就一直評選十大最具創新性的技術,而2021年的名單是:

1、信使RNA。這種能夠更有效打擊新冠病毒的疫苗技術出現已有20年,但是它從未離開過實驗室,因為它不屬於賺錢的治療產品。新冠病毒改變了一切。從一開始,輝瑞/生物新技術和莫德納等實驗室就選擇了它,而不是傳統的滅活病毒或腺病毒,結果是有效率達到95%左右,並且獲得了技術便利(無需像其他兩種技術那樣保持生物培養),這就可以在出現新毒株時對疫苗進行重新編程

2、GPT-3。這些首字母縮寫詞代表「Generative Pre-trained Transformer 3」,指的是一種語言模型,該模型使用人工智慧來合成類似於人類文字的文本。它是OpenAI公司在2020年5月宣布的,是迄今為止設計的最強大的語言模型。簡而言之,它的工作方式類似於手機的自動完成功能,並可以根據先前的數據預測接下來的文本,但是它的功能非常強大,因為只需兩個或三個詞就可以完成整篇文章,因為它參考了所有可用的書籍以及數百萬份研究和網頁。

3、TikTok演算法。「為你創作」功能是讓大多數TikTok創作者認為此款應用與眾不同,並且讓它得到迅速發展的原因之一。「為你創作」可以使任何人成名。在其他網路優先關注熱點熱搜之時,事實證明TikTok的演算法可以有效地將創作者與其受眾聯系起來。

4、鋰金屬電池。矽谷量子 科技 公司宣布,鋰金屬電池的性能將超過鋰離子電池,從而使車輛的自主性提高80%。大眾 汽車 已與該公司達成協議,從2025年開始將其鋰金屬電池安裝在它們的 汽車 中。

5、數據池。又稱為數據信用,這是一些政府正在研究的用於保護個人數據的解決方案,因為基於對技術公司的信任的模型並未產生效果。數據被泄漏、被黑客入侵和出售的行為不受懲罰。有了這種信用,獨立的管理員便有責任使對個人數據的管理有利於更廣泛的利益相關者群體。

6、綠色氫。氫氣一直是具有吸引力的化石燃料替代品。它儲量豐富、不排放二氧化碳、能量密集(因此是一種很好的儲存方式),並且可以製造直接替代汽油的合成燃料。問題在於,要實現這一目標,會消耗大量能量,並且造成污染。太陽能和風能改變了這一狀況,使過程得以「清潔」。擁有陽光和水的國家可以發展綠色氫。還有從天然氣中提取的藍色氫和由煤或石油製成的黑色氫。

7、數字跟蹤接觸過程。疫情消失的最大希望之一就是:一個應用程序將使我們遠離傳染病。同時這種經驗為專家們提供了更多的啟發,他們正在重新考慮將該技術用於其他醫學領域。

8、精確定位。中國在2020年年中建成一個新的全球定位系統,稱為「北斗」衛星導航系統,其精度為1.5至2米,而目前的GPS為5至10米。GPS也在更新,2020年11月發射了四顆新衛星,到2023年將有更多的設備進入軌道。

9、遠程服務。遠程醫療和遠程教育是在疫情期間在某些企業中得到大力推廣的兩個領域。但是今天,從公務處理到客戶會議,幾乎所有事情都是遠程完成的。

10、多功能AI。在某些情況下,人工智慧(AI)已被證明相當愚蠢。專家們正在考慮通過擴大其感官來改善它的表現。下一步是將視覺和聽覺集成到機器人身上,讓它變得更加智能和高效。

『貳』 群體智能的五條基本原則

(1) 鄰近原則( Proximity Principle) ,群體能夠進行簡單的空間和時間計算;
(2) 品質原則(Quality Principle) ,群體能夠響應環境中的品質因子;
(3) 多樣性反應原則( Principle of Diverse Response) ,群體的行動范圍不應該太窄;
(4) 穩定性原則(Stability Principle) ,群體不應在每次環境變化時都改變自身的行為;
(5) 適應性原則(Adaptability Principle) ,在所需代價不太高的情況下,群體能夠在適當的時候改變自身的行為。

『叄』 群體智能的典型模型

群體智能的相關研究早已存在,到目前為止也取得了許多重要的結果。自1991年義大利學者Dorigo 提出蟻群優化(Ant Colony Optimization,ACO)理論開始,群體智能作為一個理論被正式提出,並逐漸吸引了大批學者的關注,從而掀起了研究高潮。1995年,Kennedy 等學者提出粒子群優化演算法(Particle Swarm Opti -mization,PSO ),此後群體智能研究迅速展開,但大部分工作都是圍繞ACO和PSO 進行的。
目前群智能研究主要包括智能蟻群演算法和粒子群演算法。智能蟻群演算法主要包括蟻群優化演算法、蟻群聚類演算法和多機器人協同合作系統。其中,蟻群優化演算法和粒子群優化演算法在求解實際問題時應用最為廣泛。

『肆』 由我國國務院發布的新一代人工智慧包括哪些方向

由我國國務院發布的新一代人工智慧包括:

1、大數據智能。


人工智慧的最終目標之一是使機器在很少或任何人為干預的情況下自行運行的能力。 自治系統的概念構成了AI的七個模式之一,代表 了組織應用AI的常見方式。盡管某些模式專注於預測分析或對話模式,或者可以識別我們周圍世界事物的系統,但這些模式仍然涉及人類互動。



『伍』 優化演算法是什麼

智能優化演算法是一種啟發式優化演算法,包括遺傳演算法、蟻群演算法、禁忌搜索演算法、模擬退火演算法、粒子群演算法等。·智能優化演算法一般是針對具體問題設計相關的演算法,理論要求弱,技術性強。一般,我們會把智能演算法與最優化演算法進行比較,相比之下,智能演算法速度快,應用性強。

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(5)2021年提出的群體智能演算法擴展閱讀:

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。 對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian 矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法。

『陸』 狼群演算法和灰狼演算法的區別

狼群演算法是基於狼群群體智能,模擬狼群捕食行為及其獵物分配方式,以「勝者為王」的頭狼產生規則和「強者生存」的狼群更新機制,提出一種新的群體智能演算法。而灰狼演算法是狼群演算法的優化版

『柒』 什麼是智能優化演算法

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。因此,群體智能優化演算法可以建立一個基本的理論框架模式:

Step1:設置參數,初始化種群;

Step2:生成一組解,計算其適應值;

Step3:由個體最有適應著,通過比較得到群體最優適應值;

Step4:判斷終止條件示否滿足?如果滿足,結束迭代;否則,轉向Step2;

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動步長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(7)2021年提出的群體智能演算法擴展閱讀

優化演算法有很多,經典演算法包括:有線性規劃,動態規劃等;改進型局部搜索演算法包括爬山法,最速下降法等,模擬退火、遺傳演算法以及禁忌搜索稱作指導性搜索法。而神經網路,混沌搜索則屬於系統動態演化方法。

優化思想裡面經常提到鄰域函數,它的作用是指出如何由當前解得到一個(組)新解。其具體實現方式要根據具體問題分析來定。

『捌』 智能優化演算法:灰狼優化演算法

@[toc]
摘要:受 灰 狼 群 體 捕 食 行 為 的 啟 發,Mirjalili等[1]於 2014年提出了一種新型群體智能優化演算法:灰狼優化演算法。GWO通過模擬灰狼群體捕食行為,基於狼群群體協作的機制來達到優化的目的。 GWO演算法具有結構簡單、需要調節的參數少,容易實現等特點,其中存在能夠自適應調整的收斂因子以及信息反饋機制,能夠在局部尋優與全局搜索之間實現平衡,因此在對問題的求解精度和收斂速度方面都有良好的性能。

灰狼屬於犬科動物,被認為是頂級的掠食者,它們處於生物圈食物鏈的頂端。灰狼大多喜歡群居,每個群體中平均有5-12隻狼。特別令人感興趣的是,它們具有非常嚴格的社會等級層次制度,如圖1所示。金字塔第一層為種群中的領導者,稱為 α 。在狼群中 α 是具有管理能力的個體,主要負責關於狩獵、睡覺的時間和地方、食物分配等群體中各項決策的事務。金字塔第二層是 α 的智囊團隊,稱為 β 。 β 主要負責協助α 進行決策。當整個狼群的 α 出現空缺時,β 將接替 α 的位置。 β 在狼群中的支配權僅次於 α,它將 α 的命令下達給其他成員,並將其他成員的執行情況反饋給 α 起著橋梁的作用。金字塔第三層是 δ ,δ 聽從 α 和 β 的決策命令,主要負責偵查、放哨、看護等事務。適應度不好的 α 和 β 也會降為 δ 。金字塔最底層是 ω ,主要負責種群內部關系的平衡。

<center>圖1.灰狼的社會等級制度

此外,集體狩獵是灰狼的另一個迷人的社會行為。灰狼的社會等級在群體狩獵過程中發揮著重要的作用,捕食的過程在 α 的帶領下完成。灰狼的狩獵包括以下 3個主要部分:
1)跟蹤、追逐和接近獵物;
2)追捕、包圍和騷擾獵物,直到它停止移動;
3)攻擊獵物

在狩獵過程中,將灰狼圍捕獵物的行為定義如下:

式(1)表示個體與獵物間的距離,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代數, 和 是系數向量, 和 分別是獵物的位置向量和灰狼的位置向量。 和 的計算公式如下:

其中, 是收斂因子,隨著迭代次數從2線性減小到0, 和 的模取[0,1]之間的隨機數。

灰狼能夠識別獵物的位置並包圍它們。當灰狼識別出獵物的位置後,β 和 δ 在 α 的帶領下指導狼群包圍獵物。在優化問題的決策空間中,我們對最佳解決方案(獵物的位置)並不了解。因此,為了模擬灰狼的狩獵行為,我們假設 α ,β 和 δ 更了解獵物的潛在位置。我們保存迄今為止取得的3個最優解決方案,並利用這三者的位置來判斷獵物所在的位置,同時強迫其他灰狼個體(包括 ω )依據最優灰狼個體的位置來更新其位置,逐漸逼近獵物。狼群內個體跟蹤獵物位置的機制如圖2所示。

<center>圖2.GWO 演算法中灰狼位置更新示意圖

灰狼個體跟蹤獵物位置的數學模型描述如下:

其中, 分別表示分別表示 α , β 和 δ 與其他個體間的距離。 分別代表 α , β 和 δ 的當前位置; 是隨機向量, 是當前灰狼的位置。

式(6)分別定義了狼群中 ω 個體朝向 α ,β 和 δ 前進的步長和方向,式(7)定義了 ω 的最終位置。

當獵物停止移動時,灰狼通過攻擊來完成狩獵過程。為了模擬逼近獵物, 的值被逐漸減小,因此 的波動范圍也隨之減小。換句話說,在迭代過程中,當 的值從2線性下降到0時,其對應的 的值也在區間[-a,a]內變化。如圖3a所示,當 的值位於區間內時,灰狼的下一位置可以位於其當前位置和獵物位置之間的任意位置。當 時,狼群向獵物發起攻擊(陷入局部最優)。

灰狼根據 α ,β 和 δ 的位置來搜索獵物。灰狼在尋找獵物時彼此分開,然後聚集在一起攻擊獵物。基於數學建模的散度,可以用 大於1 或小於-1 的隨機值來迫使灰狼與獵物分離,這強調了勘探(探索)並允許 GWO 演算法全局搜索最優解。如圖3b所示, 強迫灰狼與獵物(局部最優)分離,希望找到更合適的獵物(全局最優)。GWO 演算法還有另一個組件 來幫助發現新的解決方案。由式(4)可知, 是[0,2]之間的隨機值。 表示狼所在的位置對獵物影響的隨機權重, 表示影響權重大,反之,表示影響權重小。這有助於 GWO演算法更隨機地表現並支持探索,同時可在優化過程中避免陷入局部最優。另外,與 不同 是非線性減小的。這樣,從最初的迭代到最終的迭代中,它都提供了決策空間中的全局搜索。在演算法陷入了局部最優並且不易跳出時, 的隨機性在避免局部最優方面發揮了非常重要的作用,尤其是在最後需要獲得全局最優解的迭代中。

<center>圖4.演算法流程圖

[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.

[2] 張曉鳳,王秀英.灰狼優化演算法研究綜述[J].計算機科學,2019,46(03):30-38.

https://mianbaoo.com/o/bread/Z5ecmZc=
文獻復現:
文獻復現:基於翻筋斗覓食策略的灰狼優化演算法(DSFGWO)
[1]王正通,程鳳芹,尤文,李雙.基於翻筋斗覓食策略的灰狼優化演算法[J/OL].計算機應用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .

文獻復現:基於透鏡成像學習策略的灰狼優化演算法(LIS-GWO)
[1]龍文,伍鐵斌,唐明珠,徐明,蔡紹洪.基於透鏡成像學習策略的灰狼優化演算法[J].自動化學報,2020,46(10):2148-2164.

文獻復現:一種優化局部搜索能力的灰狼演算法(IGWO)
[1]王習濤.一種優化局部搜索能力的灰狼演算法[J].計算機時代,2020(12):53-55.

文獻復現:基於自適應頭狼的灰狼優化演算法(ALGWO)
[1]郭陽,張濤,胡玉蝶,杜航.基於自適應頭狼的灰狼優化演算法[J].成都大學學報(自然科學版),2020,39(01):60-63+73.

文獻復現:基於自適應正態雲模型的灰狼優化演算法 (CGWO)
[1]張鑄,饒盛華,張仕傑.基於自適應正態雲模型的灰狼優化演算法[J/OL].控制與決策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .

文獻復現:改進非線性收斂因子灰狼優化演算法
[1]王正通,尤文,李雙.改進非線性收斂因子灰狼優化演算法[J].長春工業大學學報,2020,41(02):122-127.

文獻復現:一種基於收斂因子改進的灰狼優化演算法
[1]邢燕禎,王東輝.一種基於收斂因子改進的灰狼優化演算法[J].網路新媒體技術,2020,9(03):28-34.

文獻復現:基於萊維飛行和隨機游動策略的灰狼演算法(GWOM )
[1]李陽,李維剛,趙雲濤,劉翱.基於萊維飛行和隨機游動策略的灰狼演算法[J].計算機科學,2020,47(08):291-296.

文獻復現:一種改進的灰狼優化演算法(EGWO)
[1]龍文,蔡紹洪,焦建軍,伍鐵斌.一種改進的灰狼優化演算法[J].電子學報,2019,47(01):169-175.

文獻復現:改進收斂因子和比例權重的灰狼優化演算法(CGWO)
[1]王秋萍,王夢娜,王曉峰.改進收斂因子和比例權重的灰狼優化演算法[J].計算機工程與應用,2019,55(21):60-65+98.

文獻復現:一種改進非線性收斂方式的灰狼優化演算法研究(CGWO)
[1]談發明,趙俊傑,王琪.一種改進非線性收斂方式的灰狼優化演算法研究[J].微電子學與計算機,2019,36(05):89-95.

文獻復現:一種基於Tent 映射的混合灰狼優化的改進演算法(PSOGWO)
[1]滕志軍,呂金玲,郭力文,許媛媛.一種基於Tent映射的混合灰狼優化的改進演算法[J].哈爾濱工業大學學報,2018,50(11):40-49.

文獻復現:基於差分進化與優勝劣汰策略的灰狼優化演算法(IGWO)
[1]朱海波,張勇.基於差分進化與優勝劣汰策略的灰狼優化演算法[J].南京理工大學學報,2018,42(06):678-686.

文獻復現:基於 Iterative 映射和單純形法的改進灰狼優化演算法(SMIGWO)
[1]王夢娜,王秋萍,王曉峰.基於Iterative映射和單純形法的改進灰狼優化演算法[J].計算機應用,2018,38(S2):16-20+54.

文獻復現:一種基於混合策略的灰狼優化演算法(EPDGWO)
[1]牛家彬,王輝.一種基於混合策略的灰狼優化演算法[J].齊齊哈爾大學學報(自然科學版),2018,34(01):16-19+32.

文獻復現:基於隨機收斂因子和差分變異的改進灰狼優化演算法(IGWO)
[1]徐松金,龍文.基於隨機收斂因子和差分變異的改進灰狼優化演算法[J].科學技術與工程,2018,18(23):252-256.

文獻復現:一種基於差分進化和灰狼演算法的混合優化演算法(DEGWO)
[1]金星,邵珠超,王盛慧.一種基於差分進化和灰狼演算法的混合優化演算法[J].科學技術與工程,2017,17(16):266-269.

文獻復現:協調探索和開發能力的改進灰狼優化演算法(IGWO)
[1]龍文,伍鐵斌.協調探索和開發能力的改進灰狼優化演算法[J].控制與決策,2017,32(10):1749-1757.

文獻復現:基於Cat混沌與高斯變異的改進灰狼優化演算法(IGWO)
[1]徐辰華,李成縣,喻昕,黃清寶.基於Cat混沌與高斯變異的改進灰狼優化演算法[J].計算機工程與應用,2017,53(04):1-9+50.

文獻復現:具有自適應搜索策略的灰狼優化演算法(SAGWO)
[1]魏政磊,趙輝,韓邦傑,孫楚,李牧東.具有自適應搜索策略的灰狼優化演算法[J].計算機科學,2017,44(03):259-263.

文獻復現:採用動態權重和概率擾動策略改進的灰狼優化演算法(IGWO)
[1]陳闖,Ryad Chellali,邢尹.採用動態權重和概率擾動策略改進的灰狼優化演算法[J].計算機應用,2017,37(12):3493-3497+3508.

文獻復現:具有自適應調整策略的混沌灰狼優化演算法(CLSGWO)
[1]張悅,孫惠香,魏政磊,韓博.具有自適應調整策略的混沌灰狼優化演算法[J].計算機科學,2017,44(S2):119-122+159.

文獻復現:強化狼群等級制度的灰狼優化演算法(GWOSH)
[1]張新明,塗強,康強,程金鳳.強化狼群等級制度的灰狼優化演算法[J].數據採集與處理,2017,32(05):879-889.

文獻復現:一種新型非線性收斂因子的灰狼優化演算法(NGWO)
[1]王敏,唐明珠.一種新型非線性收斂因子的灰狼優化演算法[J].計算機應用研究,2016,33(12):3648-3653.

文獻復現:重選精英個體的非線性收斂灰狼優化演算法(EGWO)
[1]黎素涵,葉春明.重選精英個體的非線性收斂灰狼優化演算法[J].計算機工程與應用,2021,57(01):62-68.

https://mianbaoo.com/o/bread/aZ2Wl54=

『玖』 人工智慧十大演算法

人工智慧十大演算法如下

線性回歸(Linear Regression)可能是最流行的機器學習演算法。線性回歸就是要找一條直線,並且讓這條直線盡可能地擬合散點圖中的數據點。它試圖通過將直線方程與該數據擬合來表示自變數(x值)和數值結果(y值)。然後就可以用這條線來預測未來的值!

邏輯回歸(Logistic regression)與線性回歸類似,但它是用於輸出為二進制的情況(即,當結果只能有兩個可能的值)。對最終輸出的預測是一個非線性的S型函數,稱為logistic function, g()。

決策樹(Decision Trees)可用於回歸和分類任務。

樸素貝葉斯(Naive Bayes)是基於貝葉斯定理。它測量每個類的概率,每個類的條件概率給出x的值。這個演算法用於分類問題,得到一個二進制「是/非」的結果。看看下面的方程式。

支持向量機(Support Vector Machine,SVM)是一種用於分類問題的監督演算法。支持向量機試圖在數據點之間繪制兩條線,它們之間的邊距最大。為此,我們將數據項繪制為n維空間中的點,其中,n是輸入特徵的數量。在此基礎上,支持向量機找到一個最優邊界,稱為超平面(Hyperplane),它通過類標簽將可能的輸出進行最佳分離。

K-最近鄰演算法(K-Nearest Neighbors,KNN)非常簡單。KNN通過在整個訓練集中搜索K個最相似的實例,即K個鄰居,並為所有這些K個實例分配一個公共輸出變數,來對對象進行分類。

K-均值(K-means)是通過對數據集進行分類來聚類的。例如,這個演算法可用於根據購買歷史將用戶分組。它在數據集中找到K個聚類。K-均值用於無監督學習,因此,我們只需使用訓練數據X,以及我們想要識別的聚類數量K。

隨機森林(Random Forest)是一種非常流行的集成機器學習演算法。這個演算法的基本思想是,許多人的意見要比個人的意見更准確。在隨機森林中,我們使用決策樹集成(參見決策樹)。

由於我們今天能夠捕獲的數據量之大,機器學習問題變得更加復雜。這就意味著訓練極其緩慢,而且很難找到一個好的解決方案。這一問題,通常被稱為「維數災難」(Curse of dimensionality)。

人工神經網路(Artificial Neural Networks,ANN)可以處理大型復雜的機器學習任務。神經網路本質上是一組帶有權值的邊和節點組成的相互連接的層,稱為神經元。在輸入層和輸出層之間,我們可以插入多個隱藏層。人工神經網路使用了兩個隱藏層。除此之外,還需要處理深度學習。

閱讀全文

與2021年提出的群體智能演算法相關的資料

熱點內容
java棧的元素 瀏覽:737
程序員與籃球事件 瀏覽:673
app反編譯不完整 瀏覽:788
電腦上的文件夾怎麼調整 瀏覽:5
伺服器無響應是什麼原因呀 瀏覽:984
wd文檔里的app怎麼製作 瀏覽:513
電腦里的文件夾沒有了一般能恢復嗎 瀏覽:418
哪裡有配加密鑰匙的 瀏覽:210
伺服器開不了機怎麼把數據弄出來 瀏覽:958
gif動態圖片怎麼壓縮 瀏覽:521
黑猴子棒球壓縮文件解壓密碼 瀏覽:631
如何讓app適應不同的手機屏幕大小 瀏覽:10
蘋果手機如何給安卓手機分享軟體 瀏覽:761
蘋果電腦怎麼運行騰訊雲伺服器 瀏覽:59
明日之後沙石堡命令助手 瀏覽:261
蛋糕店用什麼樣的app 瀏覽:877
長安銀行信用卡app怎麼取現 瀏覽:635
dos命令cmd命令的 瀏覽:226
阿里雲存檔視頻文件的伺服器 瀏覽:194
ftp修改文件許可權命令 瀏覽:491