導航:首頁 > 源碼編譯 > 近鄰演算法

近鄰演算法

發布時間:2022-02-07 06:08:51

A. 鄰近演算法的優點

1.簡單,易於理解,易於實現,無需估計參數,無需訓練;
2. 適合對稀有事件進行分類;
3.特別適合於多分類問題(multi-modal,對象具有多個類別標簽), kNN比SVM的表現要好。

B. k近鄰演算法的概念介紹

用官方的話來說,所謂K近鄰演算法,即是給定一個訓練數據集,對新的輸入實例,在訓練數據集中找到與該實例最鄰近的K個實例(也就是上面所說的K個鄰居), 這K個實例的多數屬於某個類,就把該輸入實例分類到這個類中。根據這個說法,咱們來看下引自維基網路上的一幅圖:

C. 鄰近演算法的改進策略

kNN演算法因其提出時間較早,隨著其他技術的不斷更新和完善,kNN演算法的諸多不足之處也逐漸顯露,因此許多kNN演算法的改進演算法也應運而生。
針對以上演算法的不足,演算法的改進方向主要分成了分類效率和分類效果兩方面。
分類效率:事先對樣本屬性進行約簡,刪除對分類結果影響較小的屬性,快速的得出待分類樣本的類別。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。
分類效果:採用權值的方法(和該樣本距離小的鄰居權值大)來改進,Han等人於2002年嘗試利用貪心法,針對文件分類實做可調整權重的k最近鄰居法WAkNN (weighted adjusted k nearest neighbor),以促進分類效果;而Li等人於2004年提出由於不同分類的文件本身有數量上有差異,因此也應該依照訓練集合中各種分類的文件數量,選取不同數目的最近鄰居,來參與分類。

D. 鄰近演算法的缺點

該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。
可理解性差,無法給出像決策樹那樣的規則。

E. 機器學習中演算法的優缺點之最近鄰演算法

機器學習中有個演算法是十分重要的,那就是最近鄰演算法,這種演算法被大家稱為KNN。我們在學習機器學習知識的時候一定要學習這種演算法,其實不管是什麼演算法都是有自己的優缺點的,KNN演算法也不例外,在這篇文章中我們就詳細的給大家介紹一下KNN演算法的優缺點,大家一定要好好學起來喲。
說到KNN演算法我們有必要說一下KNN演算法的主要過程,KNN演算法的主要過程有四種,第一就是計算訓練樣本和測試樣本中每個樣本點的距離,第二個步驟就是對上面所有的距離值進行排序(升序)。第三個步驟就是選前k個最小距離的樣本。第四個步驟就是根據這k個樣本的標簽進行投票,得到最後的分類類別。
那麼大家是否知道如何選擇一個最佳的K值,這取決於數據。一般情況下,在分類時較大的K值能夠減小雜訊的影響,但會使類別之間的界限變得模糊。一般來說,一個較好的K值可通過各種啟發式技術來獲取,比如說交叉驗證。另外雜訊和非相關性特徵向量的存在會使K近鄰演算法的准確性減小。近鄰演算法具有較強的一致性結果,隨著數據趨於無限,演算法保證錯誤率不會超過貝葉斯演算法錯誤率的兩倍。對於一些好的K值,K近鄰保證錯誤率不會超過貝葉斯理論誤差率。
那麼KNN演算法的優點是什麼呢?KNN演算法的優點具體體現在六點,第一就是對數據沒有假設,准確度高,對outlier不敏感。第二就是KNN是一種在線技術,新數據可以直接加入數據集而不必進行重新訓練。第三就是KNN理論簡單,容易實現。第四就是理論成熟,思想簡單,既可以用來做分類也可以用來做回歸。第五就是可用於非線性分類。第六就是訓練時間復雜度為O(n)。由此可見,KNN演算法的優點是有很多的。
那麼KNN演算法的缺點是什麼呢?這種演算法的缺點具體體現在六點,第一就是樣本不平衡時,預測偏差比較大。第二就是KNN每一次分類都會重新進行一次全局運算。第三就是k值大小的選擇沒有理論選擇最優,往往是結合K-折交叉驗證得到最優k值選擇。第四就是樣本不平衡問題(即有些類別的樣本數量很多,而其它樣本的數量很少)效果差。第五就是需要大量內存。第六就是對於樣本容量大的數據集計算量比較大。
正是由於這些優點和缺點,KNN演算法應用領域比較廣泛,在文本分類、模式識別、聚類分析,多分類領域中處處有KNN演算法的身影。
在這篇文章中我們給大家介紹了很多關於KNN演算法的相關知識,通過對這些知識的理解相信大家已經知道該演算法的特點了吧,希望這篇文章能夠幫助大家更好的理解KNN演算法。

F. 使用K近鄰演算法對泰坦尼克號乘客進行分類, 各個屬性如Pclass,sex,age,embarked應該如何處理

得把參數 數字化才可以, 比如Pclass = 1,2,3 來表示不同的屬性,
然後 標准化, 保證每個屬性的范圍都在 一個范圍內,
最後 可以加上權重。

G. KNN演算法,k近鄰

K最近鄰(k-Nearest Neighbour,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

H. 鄰近演算法的演算法流程

1. 准備數據,對數據進行預處理
2. 選用合適的數據結構存儲訓練數據和測試元組
3. 設定參數,如k
4.維護一個大小為k的的按距離由大到小的優先順序隊列,用於存儲最近鄰訓練元組。隨機從訓練元組中選取k個元組作為初始的最近鄰元組,分別計算測試元組到這k個元組的距離,將訓練元組標號和距離存入優先順序隊列
5. 遍歷訓練元組集,計算當前訓練元組與測試元組的距離,將所得距離L 與優先順序隊列中的最大距離Lmax
6. 進行比較。若L>=Lmax,則舍棄該元組,遍歷下一個元組。若L < Lmax,刪除優先順序隊列中最大距離的元組,將當前訓練元組存入優先順序隊列。
7. 遍歷完畢,計算優先順序隊列中k 個元組的多數類,並將其作為測試元組的類別。
8. 測試元組集測試完畢後計算誤差率,繼續設定不同的k值重新進行訓練,最後取誤差率最小的k 值。

I. ap近鄰傳播演算法matlab輸入值是怎麼確定的

就是一個輸入輸出 function fun=wm(a,w) n=length(a);s=0; for i=1:n s=s+w(i)*a(i); end fun=s/sum(w); end

J. k近鄰演算法的案例介紹

如 上圖所示,有兩類不同的樣本數據,分別用藍色的小正方形和紅色的小三角形表示,而圖正中間的那個綠色的圓所標示的數據則是待分類的數據。也就是說,現在, 我們不知道中間那個綠色的數據是從屬於哪一類(藍色小正方形or紅色小三角形),下面,我們就要解決這個問題:給這個綠色的圓分類。我們常說,物以類聚,人以群分,判別一個人是一個什麼樣品質特徵的人,常常可以從他/她身邊的朋友入手,所謂觀其友,而識其人。我們不是要判別上圖中那個綠色的圓是屬於哪一類數據么,好說,從它的鄰居下手。但一次性看多少個鄰居呢?從上圖中,你還能看到:
如果K=3,綠色圓點的最近的3個鄰居是2個紅色小三角形和1個藍色小正方形,少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於紅色的三角形一類。 如果K=5,綠色圓點的最近的5個鄰居是2個紅色三角形和3個藍色的正方形,還是少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於藍色的正方形一類。 於此我們看到,當無法判定當前待分類點是從屬於已知分類中的哪一類時,我們可以依據統計學的理論看它所處的位置特徵,衡量它周圍鄰居的權重,而把它歸為(或分配)到權重更大的那一類。這就是K近鄰演算法的核心思想。
KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。
KNN 演算法本身簡單有效,它是一種 lazy-learning 演算法,分類器不需要使用訓練集進行訓練,訓練時間復雜度為0。KNN 分類的計算復雜度和訓練集中的文檔數目成正比,也就是說,如果訓練集中文檔總數為 n,那麼 KNN 的分類時間復雜度為O(n)。
KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
K 近鄰演算法使用的模型實際上對應於對特徵空間的劃分。K 值的選擇,距離度量和分類決策規則是該演算法的三個基本要素: K 值的選擇會對演算法的結果產生重大影響。K值較小意味著只有與輸入實例較近的訓練實例才會對預測結果起作用,但容易發生過擬合;如果 K 值較大,優點是可以減少學習的估計誤差,但缺點是學習的近似誤差增大,這時與輸入實例較遠的訓練實例也會對預測起作用,是預測發生錯誤。在實際應用中,K 值一般選擇一個較小的數值,通常採用交叉驗證的方法來選擇最優的 K 值。隨著訓練實例數目趨向於無窮和 K=1 時,誤差率不會超過貝葉斯誤差率的2倍,如果K也趨向於無窮,則誤差率趨向於貝葉斯誤差率。 該演算法中的分類決策規則往往是多數表決,即由輸入實例的 K 個最臨近的訓練實例中的多數類決定輸入實例的類別 距離度量一般採用 Lp 距離,當p=2時,即為歐氏距離,在度量之前,應該將每個屬性的值規范化,這樣有助於防止具有較大初始值域的屬性比具有較小初始值域的屬性的權重過大。 KNN演算法不僅可以用於分類,還可以用於回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成反比。該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以採用權值的方法(和該樣本距離小的鄰居權值大)來改進。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。
實現 K 近鄰演算法時,主要考慮的問題是如何對訓練數據進行快速 K 近鄰搜索,這在特徵空間維數大及訓練數據容量大時非常必要。

閱讀全文

與近鄰演算法相關的資料

熱點內容
如何對伺服器取證 瀏覽:440
有什麼系統像友價源碼 瀏覽:570
圓柱彈簧壓縮量 瀏覽:811
我的世界國際版為什麼沒法進去伺服器 瀏覽:103
我的世界如何創造一個伺服器地址 瀏覽:837
皮皮蝦app怎麼玩視頻教程 瀏覽:253
python整型轉化字元串 瀏覽:804
android數據共享方式 瀏覽:375
編譯環境控制台 瀏覽:620
寧波欣達壓縮機空氣過濾器價位 瀏覽:665
冪函數的運演算法則總結 瀏覽:138
方舟自己的伺服器怎麼搞藍圖 瀏覽:915
校園網怎麼加密ip 瀏覽:786
kotlin可以編譯雙端嗎 瀏覽:327
哪個幼兒識字app不要錢 瀏覽:802
壓縮軟體的作用 瀏覽:31
猴子網游app安全嗎怎麼掃碼 瀏覽:221
哪些系統盤文件夾大 瀏覽:341
pdf朗讀軟體手機 瀏覽:226
ug編程實例教程 瀏覽:989