❶ 最長公共序列(LCS)演算法用c如何實現!
int **lcs_length(char p[],char q[],int **c,int **k,int m,int n)
{
int i,j;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
{
if(p[i-1]==q[j-1])//如果兩個字母相等的情況
{
c[i][j]=c[i-1][j-1]+1;
k[i][j]=1;
}
else
{
if(c[i-1][j]>=c[i][j-1])//兩字母不等情況1
{
c[i][j]=c[i-1][j];
k[i][j]=2;
}
else//兩字母不等情況2
{
c[i][j]=c[i][j-1];
k[i][j]=3;
}
}
}
}
return c,k;
}
輸出代碼
void print_lcs(int **k,char p[],int i,int j)
{
if(i==0||j==0)
return ;
if(k[i][j]==1)
{
print_lcs(k,p,i-1,j-1);//通過遞歸的方法按照輸入的從頭到尾的順序輸出LCS
cout<<p[i-1];
}
else if(k[i][j]==2)
print_lcs(k,p,i-1,j);
else
print_lcs(k,p,i,j-1);
}
❷ 動態規劃 最長公共子序列 過程圖解
首先需要科普一下,最長公共子序列(longest common sequence)和最長公共子串(longest common substring)不是一回事兒。
這里給出一個例子:有兩個母串
cnblogs
belong
比如序列bo, bg, lg在母串cnblogs與belong中都出現過並且出現順序與母串保持一致,我們將其稱為公共子序列。最長公共子序列(Longest Common Subsequence,LCS),顧名思義,是指在所有的子序列中最長的那一個。
子串是要求更嚴格的一種子序列, 要求在母串中連續地出現 。
在上述例子的中,最長公共子序列為blog(cnblogs,belong),最長公共子串為lo(cnblogs, belong)。
給一個圖再解釋一下:
如上圖,給定的字元序列: {a,b,c,d,e,f,g,h},它的子序列示例: {a,c,e,f} 即元素b,d,g,h被去掉後,保持原有的元素序列所得到的結果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。
它的子串示例:{c,d,e,f} 即連續元素c,d,e,f組成的串是給定序列的子串。同理,{a,b,c,d},{g,h}等都是它的子串。
這個問題說明白後,最長公共子序列(以下都簡稱LCS)就很好理解了。
給定序列s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2},s1和s2的相同子序列,且該子序列的長度最長,即是LCS。
s1和s2的其中一個最長公共子序列是 {3,4,6,7,8}
求解LCS問題,不能使用暴力搜索方法。 一個長度為n的序列擁有 2的n次方個子序列,它的時間復雜度是指數階 ,太恐怖了。解決LCS問題,需要藉助動態規劃的思想。
動態規劃演算法通常用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃求解的問題,經分解得到子問題往往不是互相獨立的。若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次。 為了避免大量的重復計算,節省時間,我們引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。
解決LCS問題,需要把原問題分解成若干個子問題,所以需要刻畫LCS的特徵。
設A=「a0,a1,…,am」,B=「b0,b1,…,bn」,且Z=「z0,z1,…,zk」為它們的最長公共子序列。不難證明有以下性質:
如果am=bn,則zk=am=bn,且「z0,z1,…,z(k-1)」是「a0,a1,…,a(m-1)」和「b0,b1,…,b(n-1)」的一個最長公共子序列;
如果am!=bn,則若zk!=am,蘊涵「z0,z1,…,zk」是「a0,a1,…,a(m-1)」和「b0,b1,…,bn」的一個最長公共子序列;
如果am!=bn,則若zk!=bn,蘊涵「z0,z1,…,zk」是「a0,a1,…,am」和「b0,b1,…,b(n-1)」的一個最長公共子序列。
有些同學,一看性質就容易暈菜,所以我給出一個圖來讓這些同學理解一下:
以我在第1小節舉的例子(S1={1,3,4,5,6,7,7,8}和S2={3,5,7,4,8,6,7,8,2}),並結合上圖來說:
假如S1的最後一個元素 與 S2的最後一個元素相等,那麼S1和S2的LCS就等於 {S1減去最後一個元素} 與 {S2減去最後一個元素} 的 LCS 再加上 S1和S2相等的最後一個元素。
假如S1的最後一個元素 與 S2的最後一個元素不等(本例子就是屬於這種情況),那麼S1和S2的LCS就等於 : {S1減去最後一個元素} 與 S2 的LCS, {S2減去最後一個元素} 與 S1 的LCS 中的最大的那個序列。
假設Z=<z1,z2,⋯,zk>是X與Y的LCS, 我們觀察到
如果Xm=Yn,則Zk=Xm=Yn,有Zk−1是Xm−1與Yn−1的LCS;
如果Xm≠Yn,則Zk是Xm與Yn−1的LCS,或者是Xm−1與Yn的LCS。
因此,求解LCS的問題則變成遞歸求解的兩個子問題。但是,上述的遞歸求解的辦法中, 重復的子問題多,效率低下。改進的辦法——用空間換時間,用數組保存中間狀態,方便後面的計算。這就是動態規劃(DP)的核心思想了。
DP求解LCS
用二維數組c[i][j]記錄串x1x2⋯xi與y1y2⋯yj的LCS長度,則可得到狀態轉移方程
以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}為例。我們借用《演算法導論》中的推導圖:
圖中的空白格子需要填上相應的數字(這個數字就是c[i,j]的定義,記錄的LCS的長度值)。填的規則依據遞歸公式,簡單來說:如果橫豎(i,j)對應的兩個元素相等,該格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化該表:
S1的元素3 與 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),圖中c[1,2] 和 c[2,1] 背景色為淺黃色。
繼續填充:
至此,該表填完。根據性質,c[8,9] = S1 和 S2 的 LCS的長度,即為5。
本文S1和S2的最LCS並不是只有1個,本文並不是著重講輸出兩個序列的所有LCS,只是介紹如何通過上表,輸出其中一個LCS。
我們根據遞歸公式構建了上表,我們將從最後一個元素c[8][9]倒推出S1和S2的LCS。
c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值來源於c[8][8]的值(因為c[8][8] > c[7][9])。
c[8][8] = 5, 且S1[8] = S2[8], 所以倒推回去,c[8][8]的值來源於 c[7][7]。
以此類推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 這種存在分支的情況,這里請都選擇一個方向(之後遇到這樣的情況,也選擇相同的方向)。
這就是倒推回去的路徑,棕色方格為相等元素,即LCS = {3,4,6,7,8},這是其中一個結果。
如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 這種存在分支的情況,選擇另一個方向,會得到另一個結果。
即LCS ={3,5,7,7,8}。
構建c[i][j]表需要Θ(mn),輸出1個LCS的序列需要Θ(m+n)。
參考:
https://blog.csdn.net/hrn1216/article/details/51534607
https://blog.csdn.net/u012102306/article/details/53184446
❸ 演算法分析 備忘錄方法的遞歸方式是自頂向下的,動態規劃演算法的遞歸方式是自底向上的,想問一下,
備忘錄方法是動態規劃方法的變形。與動態規劃演算法不同的是,備忘錄方法的遞歸方式是自頂向下的,而動態規劃演算法則是自底向上的。
如: 求LCS的問題:
當xi=yj時,求C[i,j]只需知道C[i-1,j-1],而無需用到C[i,0]~C[i,j-1]及C[i-1,j]~C[i-1,n]。
∴ 當只需求出一個LCS時,可能有一些C[p,q]在整個求解過程中都不會用到。
一般地,當某個問題可以用動態規劃法求解,但二維數組中有相當一部分元素在整個計算中都不會被用到。我們就不需要以遞推方式逐個計算二維數組中元素。
而採用備忘錄方法:數組中的元素只是在需要計算時才去計算,計算採用遞歸方式,值計算出來之後將其保存起來以備它用。
如:求LCS的問題:
首先將C[i,0](0≤i≤m)與C[0,j](1≤j≤n)初始化為0。其餘m×n個C[i,j]全部初始化為-1。
計算C[i,j]的遞歸演算法LCS_L2(X,Y, i,j,C)(備忘錄方法):
若x[i]=y[j],則去檢查C[i-1,j-1],若C[i-1,j-1]> -1(已經計算出來),就直接把C[i-1,j-1]+1賦給C[i,j],返回。
若C[i-1,j-1]=-1(尚未計算出來),就遞歸調用LCS_L2(X,Y, i-1,j-1,C) 計算出C[i-1,j-1],然後再把C[i-1,j-1]+1賦給C[i,j] ,返回。
若x[i] ¹ y[j],則要檢查C[i-1,j]和C[i,j-1]。
若兩者均 > -1(已經計算出來),則把max{ C[i-1,j], C[i,j-1]} 賦給C[i,j],返回。
若C[i-1,j], C[i,j-1] 兩者中有一個等於-1(尚未計算出來),或兩者均等於-1,就遞歸調用LCS_L2將其計算出來,然後再把max{ C[i-1,j], C[i,j-1]} 賦給C[i,j]。
∴若有大量的子問題無需求解時,用備忘錄方法較省時。
但當無需計算的子問題只有少部分或全部都要計算時,用遞推方法比備忘錄方法要好(如矩陣連乘,最優二分搜索樹)
❹ 求解:用C語言,編寫程序使N階方陣轉置
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
階乘計算
問題描述:編寫程序,對給定的n(n≤100),計算並輸出k的階乘k!(k=1,2,…,n)的全部有效數字。
由於要求的整數可能大大超出一般整數的位數,程序用一維數組存儲長整數,存儲長整數數組的每個元素只存儲長整數的一位數字。如有m位成整數N用數組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
並用a[0]存儲長整數N的位數m,即a[0]=m。按上述約定,數組的每個元素存儲k的階乘k!的一位數字,並從低位到高位依次存於數組的第二個元素、第三個元素……。例如,5!=120,在數組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數是一個3位數,接著是低位到高位依次是0、2、1,表示成整數120。
計算階乘k!可採用對已求得的階乘(k-1)!連續累加k-1次後求得。例如,已知4!=24,計算5!,可對原來的24累加4次24後得到120。細節見以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.遞歸
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
編寫計算斐波那契(Fibonacci)數列的第n項函數fib(n)。
斐波那契數列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以採用這樣的遞歸思想來考慮求組合函數的演算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其後的數字是從餘下的m-1個數中取k-1數的組合。這就將求m個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出後,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組後,有兩種可能的選擇,因還未去頂組合的其餘元素,繼續遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(「%4d」,a[j]);
printf(「\n」);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。
組合問題
問題描述:找出從自然數1,2,…,n中任取r個數的所有組合。
採用回溯法找問題的解,將找到的組合以從小到大順序存於a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質:
(1) a[i+1]>a,後一個數字比前一個大;
(2) a-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數個數為r的條件,候選組合從只有一個數字1開始。因該候選解滿足除問題規模之外的全部條件,擴大其規模,並使其滿足上述條件(1),候選組合改為1,2。繼續這一過程,得到候選組合1,2,3。該候選解滿足包括問題規模在內的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調整為4,以及以後調整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由於對5不能再作調整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調整為3,並向前試探,得到解1,3,4。重復上述向前試探和向後回溯,直至要從a[0]再回溯時,說明已經找完問題的全部解。按上述思想寫成程序如下:
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(「%4d」,a[j]);
printf(「\n」);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數最少,不考慮找零錢的所有各種發表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優,是因為銀行對其發行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪演算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優的解應是3個5單位面值的硬幣。
裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對於0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數目可能不同。裝箱問題要求使裝盡這n種物品的箱子數要少。
若考察將n種物品的集合分劃成n個或小於n個物品的所有子集,最優解就可以找到。但所有可能劃分的總數太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題採用非常簡單的近似演算法,即貪婪法。該演算法依次將物品放到它第一個能放進去的箱子中,該演算法雖不能保證找到最優解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然後按排序結果對物品重新編號即可。裝箱演算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數器box_count為0;
for (i=0;i<n;i++)
{ 從已用的第一隻箱子開始順序尋找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,並將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述演算法能求出需要的箱子數box_count,並能求出各箱子所裝物品。下面的例子說明該演算法不一定能找到最優解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述演算法計算,需三隻箱子,各箱子所裝物品分別為:第一隻箱子裝物品1、3;第二隻箱子裝物品2、4、5;第三隻箱子裝物品6。而最優解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每隻箱子所裝物品用鏈表來表示,鏈表首結點指針存於一個結構中,結構記錄尚剩餘的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上演算法編寫的程序。
}
5.分治法
任何一個可以用計算機求解的問題所需的計算時間都與其規模N有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題(1<k≤n),且這些子問題都可解,並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
分治法所能解決的問題一般具有以下幾個特徵:
(1)該問題的規模縮小到一定的程度就可以容易地解決;
(2)該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質;
(3)利用該問題分解出的子問題的解可以合並為該問題的解;
(4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特徵是應用分治法的前提,它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮貪心法或動態規劃法。第四條特徵涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
分治法在每一層遞歸上都有三個步驟:
(1)分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
(2)解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
(3)合並:將各個子問題的解合並為原問題的解。
6.動態規劃法
經常會遇到復雜問題不能簡單地分解成幾個子問題,而會分解出一系列的子問題。簡單地採用把大問題分解成子問題,並綜合子問題的解導出大問題的解的方法,問題求解耗時會按問題規模呈冪級數增加。
為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。以下先用實例說明動態規劃方法的使用。
求兩字元序列的最長公共字元子序列
問題描述:字元序列的子序列是指從給定字元序列中隨意地(不一定連續)去掉若干個字元(可能一個也不去掉)後所形成的字元序列。令給定的字元序列X=「x0,x1,…,xm-1」,序列Y=「y0,y1,…,yk-1」是X的子序列,存在X的一個嚴格遞增下標序列<i0,i1,…,ik-1>,使得對所有的j=0,1,…,k-1,有xij=yj。例如,X=「ABCBDAB」,Y=「BCDB」是X的一個子序列。
考慮最長公共子序列問題如何分解成子問題,設A=「a0,a1,…,am-1」,B=「b0,b1,…,bm-1」,並Z=「z0,z1,…,zk-1」為它們的最長公共子序列。不難證明有以下性質:
(1) 如果am-1=bn-1,則zk-1=am-1=bn-1,且「z0,z1,…,zk-2」是「a0,a1,…,am-2」和「b0,b1,…,bn-2」的一個最長公共子序列;
(2) 如果am-1!=bn-1,則若zk-1!=am-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列;
(3) 如果am-1!=bn-1,則若zk-1!=bn-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列。
這樣,在找A和B的公共子序列時,如有am-1=bn-1,則進一步解決一個子問題,找「a0,a1,…,am-2」和「b0,b1,…,bm-2」的一個最長公共子序列;如果am-1!=bn-1,則要解決兩個子問題,找出「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列和找出「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列,再取兩者中較長者作為A和B的最長公共子序列。
代碼如下:
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];
int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}
char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=』』;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}
void main()
{ printf (「Enter two string(<%d)!\n」,N);
scanf(「%s%s」,a,b);
printf(「LCS=%s\n」,build_lcs(str,a,b));
}
7.迭代法
迭代法是用於求方程或方程組近似根的一種常用的演算法設計方法。設方程為f(x)=0,用某種數學方法導出等價的形式x=g(x),然後按以下步驟執行:
(1) 選一個方程的近似根,賦給變數x0;
(2) 將x0的值保存於變數x1,然後計算g(x1),並將結果存於變數x0;
(3) 當x0與x1的差的絕對值還小於指定的精度要求時,重復步驟(2)的計算。
若方程有根,並且用上述方法計算出來的近似根序列收斂,則按上述方法求得的x0就認為是方程的根。上述演算法用C程序的形式表示為:
程序如下:
迭代法求方程組的根
{ for (i=0;i<n;i++)
x=初始近似根;
do {
for (i=0;i<n;i++)
y = x;
for (i=0;i<n;i++)
x = gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon);
for (i=0;i<n;i++)
printf(「變數x[%d]的近似根是 %f」,I,x);
printf(「\n」);
} 具體使用迭代法求根時應注意以下兩種可能發生的情況:
(1)如果方程無解,演算法求出的近似根序列就不會收斂,迭代過程會變成死循環,因此在使用迭代演算法前應先考察方程是否有解,並在程序中對迭代的次數給予限制;
(2)方程雖然有解,但迭代公式選擇不當,或迭代的初始近似根選擇不合理,也會導致迭代失敗。
8.窮舉搜索法
窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。
將A、B、C、D、E、F這六個變數排成如圖所示的三角形,這六個變數分別取[1,6]上的整數,且均不相同。求使三角形三條邊上的變數之和相等的全部解。如圖就是一個解。
程序引入變數a、b、c、d、e、f,並讓它們分別順序取1至6的整數,在它們互不相同的條件下,測試由它們排成的如圖所示的三角形三條邊上的變數之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當這些變數取盡所有的組合後,程序就可得到全部可能的解。程序如下:
按窮舉法編寫的程序通常不能適應變化的情況。如問題改成有9個變數排成三角形,每條邊有4個變數的情況,程序的循環重數就要相應改變。
❺ LCS演算法是怎麼實現的
LCS問題就是求兩個字元串最長公共子串的問題。解法就是用一個矩陣來記錄兩個字元串中所有位置的兩個字元之間的匹配情況,若是匹配則為1,否則為0。然後求出對角線最長的1序列,其對應的位置就是最長匹配子串的位置。
下面是字元串21232523311324和字元串312123223445的匹配矩陣,前者為X方向的,後者為Y方向的。不難找到,紅色部分是最長的匹配子串。通過查找位置我們得到最長的匹配子串為:21232
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
但是在0和1的矩陣中找最長的1對角線序列又要花去一定的時間。通過改進矩陣的生成方式和設置標記變數,可以省去這部分時間。下面是新的矩陣生成方式:
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 2 1 0 0 0 0
1 0 2 0 1 0 1 0 0 0 0 0 1 0 0
0 2 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 3 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 4 0 0 0 2 1 0 0 1 0 0 0
1 0 1 0 5 0 1 0 0 0 0 0 2 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 2 0 0 0 2 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
不用多說,你大概已經看出來了。當字元匹配的時候,我們並不是簡單的給相應元素賦上1,而是賦上其左上角元素的值加一。我們用兩個標記變數來標記矩陣中值最大的元素的位置,在矩陣生成的過程中來判斷當前生成的元素的值是不是最大的,據此來改變標記變數的值,那麼到矩陣完成的時候,最長匹配子串的位置和長度就已經出來了。
這樣做速度比較快,但是花的空間太多。我們注意到在改進的矩陣生成方式當中,每生成一行,前面的那一行就已經沒有用了。因此我們只需使用一維數組即可。最終的代碼如下:
Private Function LCS(ByVal str_1 As String, ByVal str_2 As String) As String
If str_1 = "" Or str_2 = "" Then Return ""
Dim c(str_1.Length) As Integer
Dim max, maxj, i, j As Integer
maxj = 0 : max = 0 '這兩個是標志變數
For i = 0 To str_2.Length - 1
For j = str_1.Length - 1 To 0 Step -1
If str_2.Chars(i) = str_1.Chars(j) Then
If i = 0 Or j = 0 Then
c(j) = 1
Else
c(j) = c(j - 1) + 1
End If
Else
c(j) = 0
End If
If c(j) > max Then '把>改成>=則返回最後一個最長匹配子串
max = c(j) : maxj = j '更新標志變數
End If
Next
Next
If max = 0 Then Return ""
Return str_1.Substring(maxj - max + 1, max) '直接從標志變數得出結果
End Function
❻ LCS的解法
動態規劃的一個計算最長公共子序列的方法如下,以兩個序列 X、Y 為例子:
設有二維數組 f[i][j] 表示 X 的 i 位和 Y 的 j 位之前的最長公共子序列的長度,則有:
f[1][1] = same(1,1)
f[i][j] = max{f[i-1][j-1] + same(i,j),f[i-1][j],f[i][j-1]}
其中,same(a,b)當 X 的第 a 位與 Y 的第 b 位完全相同時為「1」,否則為「0」。
此時,f[i][j]中最大的數便是 X 和 Y 的最長公共子序列的長度,依據該數組回溯,便可找出最長公共子序列。
該演算法的空間、時間復雜度均為O(n^2),經過優化後,空間復雜度可為O(n),時間復雜度為O(nlogn)。
❼ 動態規劃
這是個背包問題,因為有每種問題都有數量要求,所以屬於 多重背包 范疇。
網路一下 背包9講,仔細看就懂了。。。