⑴ 編譯原理-LL1文法詳細講解
我們知道2型文法( CFG ),它的每個產生式類型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。
例如, 一個表達式的文法:
最終推導出 id + (id + id) 的句子,那麼它的推導過程就會構成一顆樹,即 CFG 分析樹:
從分析樹可以看出,我們從文法開始符號起,不斷地利用產生式的右部替換產生式左部的非終結符,最終推導出我們想要的句子。這種方式我們稱為自頂向下分析法。
從文法開始符號起,不斷用非終結符的候選式(即產生式)替換當前句型中的非終結符,最終得到相應的句子。
在每一步推導過程中,我們需要做兩個選擇:
因為一個句型中,可能存在多個非終結符,我們就不確定選擇那一個非終結符進行替換。
對於這種情況,我們就需要做強制規定,每次都選擇句型中第一個非終結符進行替換(或者每次都選擇句型中最後一個非終結符進行替換)。
自頂向下的語法分析採用最左推導方式,即總是選擇每個句型的最左非終結符進行替換。
最終的結果是要推導出一個特定句子(例如 id + (id + id) )。
我們將特定句子看成一個輸入字元串,而每一個非終結符對應一個處理方法,這個處理方法用來匹配輸入字元串的部分,演算法如下:
方法解析:
這種方式稱為遞歸下降分析( Recursive-Descent Parsing ):
當選擇的候選式不正確,就需要回溯( backtracking ),重新選擇候選式,進行下一次嘗試匹配。因為要不斷的回溯,導致分析效率比較低。
這種方式叫做預測分析( Predictive Parsing ):
要實現預測分析,我們必須保證從文法開始符號起,每一個推導過程中,當前句型最左非終結符 A 對於當前輸入字元 a ,只能得到唯一的 A 候選式。
根據上面的解決方法,我們首先想到,如果非終結符 A 的候選式只有一個以終結符 a 開頭候選式不就行了么。
進而我們可以得出,如果一個非終結符 A ,它的候選式都是以終結符開頭,並且這些終結符都各不相同,那麼本身就符合預測分析了。
這就是S_文法,滿足下面兩個條件:
例子:
這就是一個典型的S_文法,它的每一個非終結符遇到任一終結符得到候選式是確定的。如 S -> aA | bAB , 只有遇到終結符 a 和 b 的時候,才能返回 S 的候選式,遇到其他終結符時,直接報錯,匹配不成功。
雖然S_文法可以實現預測分析,但是從它的定義上看,S_文法不支持空產生式(ε產生式),極大地限制了它的應用。
什麼是空產生式(ε產生式)?
例子
這里 A 有了空產生式,那麼 S 的產生式組 S -> aA | bAB ,就可以是 a | bB ,這樣 a , bb , bc 就變成這個文法 G 的新句子了。
根據預測分析的定義,非終結符對於任一終結符得到的產生式是確定的,要麼能獲取唯一的產生式,要麼不匹配直接報錯。
那麼空產生式何時被選擇呢?
由此可以引入非終結符 A 的後繼符號集的概念:
定義: 由文法 G 推導出來的所有句型,可以出現在非終結符 A 後邊的終結符 a 的集合,就是這個非終結符 A 的後繼符號集,記為 FOLLOW(A) 。
因此對於 A -> ε 空產生式,只要遇到非終結符 A 的後繼符號集中的字元,可以選擇這個空產生式。
那麼對於 A -> a 這樣的產生式,只要遇到終結符 a 就可以選擇了。
由此我們引入的產生式可選集概念:
定義: 在進行推導時,選用非終結符 A 一個產生式 A→β 對應的輸入符號的集合,記為 SELECT(A→β)
因為預測分析要求非終結符 A 對於輸入字元 a ,只能得到唯一的 A 候選式。
那麼對於一個文法 G 的所有產生式組,要求有相同左部的產生式,它們的可選集不相交。
在 S_文法基礎上,我們允許有空產生式,但是要做限制:
將上面例子中的文法改造:
但是q_文法的產生式不能是非終結符打頭,這就限制了其應用,因此引入LL(1)文法。
LL(1)文法允許產生式的右部首字元是非終結符,那麼怎麼得到這個產生式可選集。
我們知道對於產生式:
定義: 給定一個文法符號串 α , α 的 串首終結符集 FIRST(α) 被定義為可以從 α 推導出的所有串首終結符構成的集合。
定義已經了解清楚了,那麼該如何求呢?
例如一個文法符號串 BCDe , 其中 B C D 都是非終結符, e 是終結符。
因此對於一個文法符號串 X1X2 … Xn ,求解 串首終結符集 FIRST(X1X2 … Xn) 演算法:
但是這里有一個關鍵點,如何求非終結符的串首終結符集?
因此對於一個非終結符 A , 求解 串首終結符集 FIRST(A) 演算法:
這里大家可能有個疑惑,怎麼能將 FIRST(Bβ) 添加到 FIRST(A) 中,如果問文法符號串 Bβ 中包含非終結符 A ,就產生了循環調用的情況,該怎麼辦?
對於 串首終結符集 ,我想大家疑惑的點就是,串首終結符集到底是針對 文法符號串 的,還是針對 非終結符 的,這個容易弄混。
其實我們應該知道, 非終結符 本身就屬於一個特殊的 文法符號串 。
而求解 文法符號串 的串首終結符集,其實就是要知道文法符號串中每個字元的串首終結符集:
上面章節我們知道了,對於非終結符 A 的 後繼符號集 :
就是由文法 G 推導出來的所有句型,可以出現在非終結符 A 後邊的終結符的集合,記為 FOLLOW(A) 。
仔細想一下,什麼樣的終結符可以出現在非終結符 A 後面,應該是在產生式中就位於 A 後面的終結符。例如 S -> Aa ,那麼終結符 a 肯定屬於 FOLLOW(A) 。
因此求非終結符 A 的 後繼符號集 演算法:
如果非終結符 A 是產生式結尾,那麼說明這個產生式左部非終結符後面能出現的終結符,也都可以出現在非終結符 A 後面。
我們可以求出 LL(1) 文法中每個產生式可選集:
根據產生式可選集,我們可以構建一個預測分析表,表中的每一行都是一個非終結符,表中的每一列都是一個終結符,包括結束符號 $ ,而表中的值就是產生式。
這樣進行語法推導的時候,非終結符遇到當前輸入字元,就可以從預測分析表中獲取對應的產生式了。
有了預測分析表,我們就可以進行預測分析了,具體流程:
可以這么理解:
我們知道要實現預測分析,要求相同左部的產生式,它們的可選集是不相交。
但是有的文法結構不符合這個要求,要進行改造。
如果相同左部的多個產生式有共同前綴,那麼它們的可選集必然相交。
例如:
那麼如何進行改造呢?
其實很簡單,進行如下轉換:
如此文法的相同左部的產生式,它們的可選集是不相交,符合現預測分析。
這種改造方法稱為 提取公因子演算法 。
當我們自頂向下的語法分析時,就需要採用最左推導方式。
而這個時候,如果產生式左部和產生式右部首字元一樣(即A→Aα),那麼推導就可能陷入無限循環。
例如:
因此對於:
文法中不能包含這兩種形式,不然最左推導就沒辦法進行。
例如:
它能夠推導出如下:
你會驚奇的發現,它能推導出 b 和 (a)* (即由 0 個 a 或者無數個 a 生成的文法符號串)。其實就可以改造成:
因此消除 直接左遞歸 演算法的一般形式:
例如:
消除間接左遞歸的方法就是直接帶入消除,即
消除間接左遞歸演算法:
這個演算法看起來描述很多,其實理解起來很簡單:
思考 : 我們通過 Ai -> Ajβ 來判斷是不是間接左遞歸,那如果有產生式 Ai -> BAjβ 且 B -> ε ,那麼它是不是間接左遞歸呢?
間接地我們可以推出如果一個產生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那麼這個產生式是不是間接左遞歸。
⑵ 【編譯原理】第四章:語法分析
從分析樹的根節點到葉節點方向構造分析樹。
即從開始符號S推導出詞串w的過程。
例:
總是選擇每個句型的 最左非終結符 進行替換。
總是選擇每個句型的 最右非終結符 進行替換。
在自底向上的分析中,總是採用 最左規約 的方式,因此把 最左規約 稱為 規范規約 ,對應的 最右推導 稱為 規范推導 。
最左推導、最右推導具有唯一性。
自頂向下的語法分析採用最左推導方試,總是選擇每個句型的 最左非終結符 進行替換。
由一組 過程 組成,每一個過程對應一個 非終結符 。
從文法開始符號S開始,遞歸調用文法中的其他非終結符,最終掃描整個輸入串,完成分析。
如果其間有不唯一的產生式,就可能需要退回上一步重新嘗試的情況,稱為 回溯 。
預測分析 是 遞歸下降分析 技術的一個特例,通過輸入中向前看固定個數的符號選擇正確的產生式。
如果一個文法可以構造出向前看k個符號的預測分析器,稱為LL(k)文法 。
預測分析不需要回溯,具有確定性。
含有 形式產生式的文法稱為是 直接左遞歸 的。
如果一個文法中有一個非終結符A使得對某個串存在推導 ,那麼這個文法是 左遞歸 的。其中,經過兩步或以上推導產生的左遞歸,稱為 間接左遞歸 的。
左遞歸會使遞歸下降分析器陷入無限循環。
文法
即
該文法是直接左遞歸的,會陷入無限循環。
將以上文法轉換為:
即可消除左遞歸。事實上,這個過程把左遞歸轉換成了右遞歸。
消除直接左遞歸的一般形式
使用代入法。
對於一個文法,通過改寫產生式來 推遲決定 ,等獲得足夠多的輸入信息再做正確的決定。
例:文法:
可以改寫為:
從文法的開始符號S開始,每一步推導根據當前句型的最左非終結符A和當前輸入符號α,選擇正確的A-產生式。為保證分析的確定性,選出的候選式必須是唯一的。
S_文法(簡單的確定型文法)
可能在某個舉行中緊跟在A後面的終結符a的集合,記為 FOLLOW(A) 。
如果A是某個句型的最右符號,則將結束符「 $ 」添加到FOLLOW(A)中。
例:文法:
中,FOLLOW(B) = {a, c}
產生式 的可選集是指可以選用該產生式進行推導時對應的輸入符號的集合,記為 SELECT(A->β) 。
例如
SELECT(A -> aβ)={a}
SELECT(A -> aβ | bγ)={a, b}
SELECT(A -> ε)=FOLLOW(A)
q_文法
文法符號串α串首終結符的集合,記作 FIRST(A) 。
⑶ 回溯法的用回溯法解題的一般步驟
(1)針對所給問題,定義問題的解空間;
(2)確定易於搜索的解空間結構;
(3)以深度優先方式搜索解空間,並在搜索過程中用剪枝函數避免無效搜索。
回溯法C語言舉例
八皇後問題是能用回溯法解決的一個經典問題。
八皇後問題是一個古老而著名的問題。該問題是十九世紀著名的數學家高斯1850年提出:在8X8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一對角線上,問有多少種擺法。引入一個整型一維數組col[]來存放最終結果,col[i]就表示在棋盤第i列、col[i]行有一個皇後,為了使程序再找完了全部解後回到最初位置,設定col[0]的初值為0,即當回溯到第0列時,說明以求得全部解,結束程序運行。為了方便演算法的實現,引入三個整型數組來表示當前列在三個方向上的狀態 :
a[] a[i]=0表示第i行上還沒有皇後;
b[] b[i]=0表示第i列反斜線/上沒有皇後;
c[] c[i]=0表示第i列正斜線上沒有皇後。
棋盤中同一反斜線/上的方格的行號與列號之和相同;同一正斜線上的方格的行號與列號之差均相同,這就是判斷斜線的依據。
初始時,所有行和斜線上都沒有皇後,從第1列的第1行配置第一個皇後開始,在第m列,col[m]行放置了一個合理的皇後,准備考察第m+1列時,在數組a[],b[]和c[]中為第m列,col[m]行的位置設定有皇後的標志;當從第m列回溯到m-1列時,並准備調整第m-1列的皇後配置時,清除在數組a[],b[]和c[]對應位置的值都為1來確定。 #include<stdio.h>
#include<stdlib.h>
#define Queens 8
int a[Queens+1]; //八皇後問題的皇後所在每一行位置,從1開始算
int main()
{
int i,k,flag,not_finish=1,count=0;
i=1;//初始
a[1]=1;
printf(the possible configuration of 8 queesns are:
);
while(not_finish) //not_finsh=1:處理未結束
{
while(not_finish && i<Queens+1) //處理未結束
{
for(flag=1,k=1;flag && k<i;k++)//判斷是否有多個皇後在同一行
if(a[k]==a[i])
flag=0;
for(k=1;flag && k<i;k++) //判斷是否有多個皇後在對角線
if((a[i]==a[k]-(k-i))||(a[i]==a[k]+(k-i)))
flag=0;
if(!flag) //若存在矛盾 重設第i個元素
{
if(a[i]==a[i-1]) //若a[i]的值已經已經一圈追上a[i-1]的值
{
i--; //退回一步 重新試探處理前一個元素
if(i>1 && a[i]==Queens)
a[i]=1; // 當a[i]為 Queens時 將a[i]的值重置
else
if(i==1 && a[i]==Queens)//當第一未位的值達到Queens時結束
not_finish=0;
else
a[i]++;
}
else
if(a[i]==Queens)
a[i]=1;
else
a[i]++;
}
else
if(++i<=Queens) //若前一個元素的值為Queens
if(a[i-1]==Queens)
a[i]=1;
else //否則元素為前一個元素的下一個值
a[i]=a[i-1]+1;
}
if (not_finish)
{
++count;
printf((count-1)%3?[%2d]::
[%2d]:,count);
for(k=1;k<=Queens;k++) //輸出結果
printf(%d,a[k]);
if(a[Queens-1]<Queens)
a[Queens-1]++;
else
a[Queens-1]=1;
i=Queens-1;
}
}
system(pause);
} var
n,k,t,i:longint;
x:array[1..100] of integer;
function pa(k:integer):boolean;
begin
pa:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then pa:=false;
end;
procere try(k:integer);
var
i:integer;
begin
if k>n then
begin
t:=t+1;
exit;
end;
for i:=1 to n do
begin
x[k]:=i;
if pa(k) then try(k+1);
end;
end;
begin
read(n);
t:=0;
try(1);
write(t);
end. #include
#include
#define m 5
#define n 6
int sf=0;
int mase[m][n]={{0,0,0,1,0,0},{0,1,0,0,0,0},{0,1,1,1,1,0},{0,0,0,0,0,1},{1,0,1,1,0,0}};
void search(int x,int y)
{
if((x==m-1)&&(y==n-1))
sf=1;
else
{
mase[x][y]=1;
if((sf!=1)&&(y!=n-1)&&mase[x][y+1]==0)
search(x,y+1);
if((sf!=1)&&(x!=m-1)&&mase[x+1][y]==0)
search(x+1,y);
if((sf!=1)&&(y!=0)&&mase[x][y-1]==0)
search(x,y-1);
if((sf!=1)&&(x!=0)&&mase[x-1][y]==0)
search(x-1,y);
}
mase[x][y]=0;
if(sf==1)
mase[x][y]=5;//通過路徑用數字的表示
}
int main()
{
int i=0,j=0;
//clrscr();
search(0,0);
for(i=0;i<m;i++) p=></m;i++)>
{
for(j=0;j<n;j++) p=></n;j++)>
printf(%d,mase[i][j]);
printf(
);
}
system(pause);
return 0;
}
回溯法解決迷宮問題PASCAL語言
program migong;
var
n,k,j,x,y:integer;
a:array[0..10000,0..10000] of integer;
b:array[0..1000000,0..2] of integer;
procere search(x,y,i:integer);
begin
a[x,y]:=1;
if (x=n) and (y=n) then
begin
for j:=1 to i-1 do
writeln(j,':(',b[j,1],',',b[j,2],')');
writeln(i,':(',x,',',y,')');
halt;
end;
if a[x-1,y]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x-1,y,i+1);end;
if a[x+1,y]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x+1,y,i+1);end;
if a[x,y-1]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x,y-1,i+1);end;
if a[x,y+1]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x,y+1,i+1);end;
a[x,y]:=0;
end;
begin
read(n);
for k:=1 to n do
for j:=1 to n do
read(a[k,j]);
for k:=0 to n+1 do
begin
a[k,0]:=-1;
a[k,n+1]:=-1;
a[n+1,k]:=-1;
a[0,k]:=-1;
end;
x:=1;y:=1;
if a[x+1,y]=0 then begin a[x,y]:=1;b[1,1]:=x;b[1,2]:=y;search(x+1,y,1);a[x,y]:=0;end;
if a[x,y+1]=0 then begin a[x,y]:=1;b[1,1]:=x;b[1,2]:=y;search(x,y+1,1);a[x,y]:=0;end;
end.
⑷ 編譯原理 設文法G[S] 求答案!
·消除左遞歸 S→aAS'|∧aAS'
S'→VaAS'|ε
對A的產生式提取左因子 A→∧aA' A'→A|ε
· 非終結符合 First Follow
S a∧ #
S』 V ε #
A ∧ #
A『 ∧ #
Select(S→aAS')=a
Select(S→∧aAS')=∧
Select(S'→VaAS')=V
Select(S'→ε)=#
Select(A→∧aA')=∧
Select(A'→A)=∧
Select(A'→ε)=#
符合LL(1)文法
a ∧ V #
S S→aAS' S→∧aAS'
S' S'→VaAS' S'→ε
A A→∧aA'
A' A'→A A'→ε
⑸ 編譯原理文法題 求解
一看就是計科的 …………
我們都是 LL1 SLR1文法沒怎麼用過
進來問候下
有空加個好友 討論下
⑹ 回溯的在編譯原理中的運用
如左圖,在發生虛假匹配時需要進行回溯,就是退回到開始的位置
⑺ 編譯原理實驗二 LL(1)分析法
通過完成預測分析法的語法分析程序,了解預測分析法和遞歸子程序法的區別和聯系。使學生了解語法分析的功能,掌握語法分析程序設計的原理和構造方法,訓練學生掌握開發應用程序的基本方法。有利於提高學生的專業素質,為培養適應社會多方面需要的能力。
根據某一文法編制調試 LL(1)分析程序,以便對任意輸入的符號串進行分析。
構造預測分析表,並利用分析表和一個棧來實現對上述程序設計語言的分析程序。
分析法的功能是利用LL(1)控製程序根據顯示棧棧頂內容、向前看符號以及LL(1)分析表,對輸入符號串自上而下的分析過程。
對文法 的句子進行不含回溯的自上向下語法分析的充分必要條件是:
(1)文法不含左遞歸;
(2)對於文法中的每一個非終結符 的各個產生式的候選首符集兩兩不相交,即,若
Follow集合構造:
對於文法 的每個非終結符 構造 的演算法是,連續使用下面的規則,直至每個 不再增大為止:
僅給出核心部分
(1) GrammerSymbol.java
(2) GrammerSymbols.java
(3) Grammer.java
(4) LL1Grammer.java
⑻ 編譯原理問題,求解決
去問下醫生是怎麼回事吧
⑼ 編譯原理回溯
消除回溯:提取左公因子a,(註:用e代表一補西農符號,就是反三的那個符號,在電腦上不知道怎麼打那個符號)
S→aS'|(L)
S'→S|e
消除左遞歸:
L→SL'
L'→,SL'|e (注意S前面有一個符號「,」)
⑽ 求一道編譯原理文法的題目的解法]
1. S->(L)|aS|a
L->SL'
L'->SL'|空
2. first:
S: ( ,a
L: ( ,a
L':( ,a,空
follow:
S: ( , a , $
L: )
L': )
倉促寫的...