❶ 定積分的運算公式
具體計算公式參照如圖:
定積分
限多個原函數。
定積分 (definite integral)
定積分就是求函數f(X)在區間[a,b]中的圖像包圍的面積。即由 y=0,x=a,x=b,y=f(X)所圍成圖形的面積。這個圖形稱為曲邊梯形,特例是曲邊三角形。
這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!
一個函數,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函數,一定存在定積分和不定積分;
若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函數一定不存在,即不定積分一定不存在。
積分在實際問題中的應用
(一)經濟問題
某工廠技術人員告訴他的老闆某種產品的總產量關於時間的變化率為R′(t)=50+5t-0.6t2,現在老闆想知道4個小時內他的工人到底能生產出多少產品。
如果我們假設這段時間為[1,5],生產的產品總量為R,則總產量R在t時刻的產量,即微元dR=R′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]內總產量為
(二)壓縮機做功問題
在生產生活過程中,壓縮機做功問題由於關繫到能源節約問題,因此備受大家關注。假設地面上有一個底半徑為5 m, 高為20 m的圓柱形水池, 往裡灌滿了水。
如果要把池中所有的水抽出,則需要壓縮機做多少功?此時,由於考慮到池中的水被不間斷地抽出,可將抽出的水分割成不同的水層。
同時, 把每層的水被抽出時需要的功定義為功微元。這樣,該問題就可通過微元法解決了。
具體操作如下: 將水面看做是原點所在的位置, 豎直向下做x軸。當水平從x處下降了dx時, 我們近似地認為厚度為dx的這層水都下降了x,因而這層水所做的功微元dw≈25πxdx(J)。當水被完全抽出, 池內的水從20 m下降為 0 m。
根據微元法, 壓縮機所做的功為W=25πxdx=15708(J) 。
(三)液體靜壓力問題
在農業生產過程中,為了保證農田的供水,常常需要建造各種儲水池。因此,我們需要了解有關靜壓力問題。
在農田中有一個寬為 4 m, 高為3 m, 且頂部在水下 5 m的閘門, 它垂直於水面放置。此閘門所受的水壓力為多少?我們可以考慮將閘門分成若干個平行於水面的小長方體。
此時, 閘門所受的壓力可看做是小長方體所受的壓力總和。 當小長方體的截面很窄的情況下, 可用其截面沿線上的壓強來近似代替各個點處的壓強。 任取一小長方體,其壓強可表示為1・x=x, 長方體截面的面積為ΔA=4dx, 從而ΔF≈x・4dx,
利用微元法求解定積分,還可以解決很多實際工程問題,關鍵是要掌握好換「元」 的技巧。這就需要我們解決問題時,要特別注意思想方法。思想方法形式多種多樣,如以直代曲、以均勻代不均勻、以不變代變化等。
網路-定積分
❷ 高等數學里 求和符號∑的運演算法則是什麼跪求詳細一點的回答~~~~
求和法則:∑j=1+2+3+…+n。
大寫Σ用於數學上的總和符號,比如:∑Pi,其中i=1,2,...,T,即為求P1 + P2 + ... + PT的和。小寫σ用於統計學上的標准差。∑公式計算:表示起和止的數。比如說下面n=2,上面數字10,表示從2起到10止。
例一:
100
∑ n
n=1
式子「1+2+3+4+5+…+100」表示從1開始的100個連續自然數的和.由於上述式子比較長,書寫也不方便,為了簡便起見,我們可以用「1+2+3+4+5+…+100」表示。
例二:
10
∑2i
i=2
表示和式:(2*2)+(2*3)+(2*4)+......+(2*10),即從4開始,一直到40的偶數的和。
(2)積分求和的運演算法則擴展閱讀:
數學其他常用符號
1、數量符號:如:i,2+i,a,x,自然對數底e,圓周率π。
2、運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫)等。
3、關系符號:如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號。
4、結合符號:如小括弧「()」中括弧「〔〕」,大括弧「{}」橫線「—」。
5、性質符號:如正號「+」,負號「-」,絕對值符號「‖」。
❸ 有關積分 求和
考慮
∑1,n 1/(i^2) x^i x為任意常數
=∑1,n {∫d[1/(i^2)x^i]/dx }
∑1,n {∫(1/i)x^(i-1)dx}
=∑1,n {∫1/x*(1/i)x^idx}
=∑1,n {∫1/x∫x^(i-1)dxdx}
根據性質,求和號可以提進積分號:
= ∫1/x∫∑(1,n)x^(i-1)dxdx
=∫1/x[∫(1-x^n)/(1-x)]dxdx
=∫1/x*(1+x+x^2+...+x^(n-1))dx
=∫(1/x+1+x+...x^(n-2))dx
=lnx+x+x^2+...x^(n-1)
令x=1,則∑1,n 1/(i^2) x^i=∑1,n 1/(i^2)
所以∑1,n 1/(i^2)=0+1+1...+1=n-1