1. 數據結構 折中查找演算法/選擇排序 起泡排序演算法
折半查找法也稱為二分查找法,它充分利用了元素間的次序關系,採用分治策略,可在最壞的情況下用O(log n)完成搜索任務。它的基本思想是,將n個元素分成個數大致相同的兩半,取a[n/2]與欲查找的x作比較,如果x=a[n/2]則找到x,演算法終止。如果x<a[n/2],則我們只要在數組a的左半部繼續搜索x(這里假設數組元素呈升序排列)。如果x>a[n/2],則我們只要在數組a的右半部繼續搜索x。二分搜索法的應用極其廣泛,而且它的思想易於理解,但是要寫一個正確的二分搜索演算法也不是一件簡單的事。第一個二分搜索演算法早在1946年就出現了,但是第一個完全正確的二分搜索演算法直到1962年才出現。Bentley在他的著作《Writing Correct Programs》中寫道,90%的計算機專家不能在2小時內寫出完全正確的二分搜索演算法。問題的關鍵在於准確地制定各次查找范圍的邊界以及終止條件的確定,正確地歸納奇偶數的各種情況,其實整理後可以發現它的具體演算法是很直觀的,我們可用C++描述如下:
template<class Type>
int BinarySearch(Type a[],const Type& x,int n)
{
int left=0;
int right=n-1;
while(left<=right){
int middle=(left+right)/2;
if (x==a[middle]) return middle;
if (x>a[middle]) left=middle+1;
else right=middle-1;
}
return -1;
}
模板函數BinarySearch在a[0]<=a[1]<=...<=a[n-1]共n個升序排列的元素中搜索x,找到x時返回其在數組中的位置,否則返回-1。容易看出,每執行一次while循環,待搜索數組的大小減少一半,因此整個演算法在最壞情況下的時間復雜度為O(log n)。在數據量很大的時候,它的線性查找在時間復雜度上的優劣一目瞭然。
選擇排序
基本思想是:每次選出第i小的記錄,放在第i個位置(i的起點是0,按此說法,第0小的記錄實際上就是最小的,有點別扭,不管這么多了)。當i=N-1時就排完了。
直接選擇排序
直選排序簡單的再現了選擇排序的基本思想,第一次尋找最小元素的代價是O(n),如果不做某種特殊處理,每次都使用最簡單的尋找方法,自然的整個排序的時間復雜度就是O(n2)了。
冒泡法
為了在a[1]中得到最大值,我們將a[1]與它後面的元素a[2],a[3],...,a[10]進行比較。首先比較a[1]與a[2],如果a[1]<a[2],則將a[1]與a[2]交換,否則不交換。這樣在a[1]中得到的是a[1]與a[2]中的大數。然後將a[1]與a[3]比較,如果a[1]<a[3],則將a[1]與a[3]交換,否則不交換。這樣在a[1]中得到的是a[1],a[2],a[3]中的最大值,...。如此繼續,最後a[1]與a[10]比較,如果a[1]<a[10],則將a[1]與a[10]交換,否則不交換。這樣在a[1]中得到的數就是數組a的最大值(一共進行了9次比較)。
為了在a[2]中得到次大值,應將a[2]與它後面的元素a[3],a[4],...,a[10]進行比較。這樣經過8次比較,在a[2]是將得到次大值。
如此繼續,直到最後a[9]與a[10]比較,將大數放於a[9],小數放於a[10],全部排序到此結束。
從上面可以看出,對於10個數,需進行9趟比較,每一趟的比較次數是不一樣的。第一趟需比較9次,第二趟比較8次,...,最後一趟比較1次。
以上數組元素的排序,用二重循環實現,外循環變數設為i,內循環變數設為j。外循環重復9次,內循環依次重復9,8,...,1次。每次進行比較的兩個元素,第一個元素與外循環i有關的,用a[i]標識,第二個元素是與內循環j有關的,用a[j]標識,i的值依次為1,2,...,9,對於每一個i, j的值依次為i+1,i+2,...。
2. audition中的FFT大小到底啥意思
FFT是一種快速的離散傅立葉變換演算法。它基於離散傅里葉變換的奇、偶、虛、實特性,改進了離散傅里葉變換的演算法。它在傅里葉變換理論上沒有新的發現,但可以應用於計算機系統或數字系統。
從那時起,基於這一思想發展了高基、分裂基等快速演算法。隨著數字技術的飛速發展,1976年出現了基於數論和多項式理論的維諾格勒傅里葉變換演算法(WFTA)和素因子傅里葉變換演算法。
它們的共同特點是當n是質數時,DFT可以轉換成循環卷積,從而進一步減少乘法次數,提高運算速度。
(2)折中演算法最佳演算法擴展閱讀:
在這些演算法中,最常用的是base-2演算法。一般來說,根據序列在時域或頻域的分解過程不同,可以分為兩類:
一類是時間提取FFT演算法(DIT),它將n點DFT的輸入序列x(n)分解為兩個n/2點序列,而x1(n)和x2(n)。前者用偶數序列號從原始序列中提取,後者用奇數序列號提取。DIT是一種由奇偶分解構成的快速演算法。
分裂基演算法(rsfft)是1984年由P.Duhamel和h.Herman提出的一種更有效的改進演算法。其基本思想是在變換的偶數部分使用基2演算法,奇數部分使用基4演算法。
其優點是結構相對簡單,非常適合於真實的對稱數據。對於長度n=2,它可以獲得最小的計算量(乘法和加法),因此它是固定基演算法中的最佳折中演算法。
3. 常見查找和排序演算法
查找成功最多要n 次,平均(n+1)/2次, 時間復雜度為O(n) 。
優點:既適用順序表也適用單鏈表,同時對表中元素順序無要求,給插入帶來方便,只需插入表尾即可。
缺點:速度較慢。
改進:在表尾設置一個崗哨,這樣不用去循環判斷數組下標是否越界,因為最後必然成立。
適用條件:
二分查找的判定樹不僅是二叉排序樹,而且是一棵理想平衡樹。 時間復雜度為O(lbn) 。
循環實現
遞歸實現
待排序的元素需要實現 Java 的 Comparable 介面,該介面有 compareTo() 方法,可以用它來判斷兩個元素的大小關系。
從數組中選擇最小元素,將它與數組的第一個元素交換位置。再從數組剩下的元素中選擇出最小的元素,將它與數組的第二個元素交換位置。不斷進行這樣的操作,直到將整個數組排序。
選擇排序需要 ~N2/2 次比較和 ~N 次交換,==它的運行時間與輸入無關==,這個特點使得它對一個已經排序的數組也需要這么多的比較和交換操作。
從左到右不斷 交換相鄰逆序的元素 ,在一輪的循環之後,可以讓未排序的最大元素上浮到右側。
在一輪循環中,如果沒有發生交換,那麼說明數組已經是有序的,此時可以直接退出。
每次都 將當前元素插入到左側已經排序的數組中 ,使得插入之後左側數組依然有序。
對於數組 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交換相鄰元素,令逆序數量減少 1,因此插入排序需要交換的次數為逆序數量。
==插入排序的時間復雜度取決於數組的初始順序,如果數組已經部分有序了,那麼逆序較少,需要的交換次數也就較少,時間復雜度較低==。
對於大規模的數組,插入排序很慢,因為它只能交換相鄰的元素,每次只能將逆序數量減少 1。希爾排序的出現就是為了解決插入排序的這種局限性,它通過交換不相鄰的元素,每次可以將逆序數量減少大於 1。
希爾排序使用插入排序對間隔 h 的序列進行排序。通過不斷減小 h,最後令 h=1,就可以使得整個數組是有序的。
希爾排序的運行時間達不到平方級別,使用遞增序列 1, 4, 13, 40, ... 的希爾排序所需要的比較次數不會超過 N 的若干倍乘於遞增序列的長度。後面介紹的高級排序演算法只會比希爾排序快兩倍左右。
歸並排序的思想是將數組分成兩部分,分別進行排序,然後歸並起來。
歸並方法將數組中兩個已經排序的部分歸並成一個。
將一個大數組分成兩個小數組去求解。
因為每次都將問題對半分成兩個子問題,這種對半分的演算法復雜度一般為 O(NlogN)。
先歸並那些微型數組,然後成對歸並得到的微型數組。
取 a[l] 作為切分元素,然後從數組的左端向右掃描直到找到第一個大於等於它的元素,再從數組的右端向左掃描找到第一個小於它的元素,交換這兩個元素。不斷進行這個過程,就可以保證左指針 i 的左側元素都不大於切分元素,右指針 j 的右側元素都不小於切分元素。當兩個指針相遇時,將切分元素 a[l] 和 a[j] 交換位置。
快速排序是原地排序,不需要輔助數組,但是遞歸調用需要輔助棧。
快速排序最好的情況下是每次都正好將數組對半分,這樣遞歸調用次數才是最少的。這種情況下比較次數為 CN=2CN/2+N,復雜度為 O(NlogN)。
最壞的情況下,第一次從最小的元素切分,第二次從第二小的元素切分,如此這般。因此最壞的情況下需要比較 N2/2。為了防止數組最開始就是有序的,在進行快速排序時需要隨機打亂數組。
因為快速排序在小數組中也會遞歸調用自己,對於小數組,插入排序比快速排序的性能更好,因此在小數組中可以切換到插入排序。
最好的情況下是每次都能取數組的中位數作為切分元素,但是計算中位數的代價很高。一種折中方法是取 3 個元素,並將大小居中的元素作為切分元素。
對於有大量重復元素的數組,可以將數組切分為三部分,分別對應小於、等於和大於切分元素。
三向切分快速排序對於有大量重復元素的隨機數組可以在線性時間內完成排序。
快速排序的 partition() 方法,會返回一個整數 j 使得 a[l..j-1] 小於等於 a[j],且 a[j+1..h] 大於等於 a[j],此時 a[j] 就是數組的第 j 大元素。
可以利用這個特性找出數組的第 k 大的元素。
該演算法是線性級別的,假設每次能將數組二分,那麼比較的總次數為 (N+N/2+N/4+..),直到找到第 k 個元素,這個和顯然小於 2N。
堆中某個節點的值總是大於等於其子節點的值,並且堆是一顆完全二叉樹。
堆可以用數組來表示,這是因為堆是完全二叉樹,而完全二叉樹很容易就存儲在數組中。位置 k 的節點的父節點位置為 k/2,而它的兩個子節點的位置分別為 2k 和 2k+1。這里不使用數組索引為 0 的位置,是為了更清晰地描述節點的位置關系。
在堆中,當一個節點比父節點大,那麼需要交換這個兩個節點。交換後還可能比它新的父節點大,因此需要不斷地進行比較和交換操作,把這種操作稱為上浮。
類似地,當一個節點比子節點來得小,也需要不斷地向下進行比較和交換操作,把這種操作稱為下沉。一個節點如果有兩個子節點,應當與兩個子節點中最大那個節點進行交換。
將新元素放到數組末尾,然後上浮到合適的位置。
從數組頂端刪除最大的元素,並將數組的最後一個元素放到頂端,並讓這個元素下沉到合適的位置。
把最大元素和當前堆中數組的最後一個元素交換位置,並且不刪除它,那麼就可以得到一個從尾到頭的遞減序列,從正向來看就是一個遞增序列,這就是堆排序。
一個堆的高度為logN,因此在堆中插入元素和刪除最大元素的復雜度都為 logN。
對於堆排序,由於要對 N 個節點進行下沉操作,因此復雜度為 NlogN。
堆排序是一種原地排序,沒有利用額外的空間。
現代操作系統很少使用堆排序,因為它無法利用局部性原理進行緩存,也就是數組元素很少和相鄰的元素進行比較和交換。
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,==計數排序要求輸入的數據必須是有確定范圍的整數==。
當輸入的元素是 n 個 0 到 k 之間的整數時,它的==運行時間是 O(n + k)==。計數排序不是比較排序,排序的速度快於任何比較排序演算法。由於用來計數的數組C的長度取決於待排序數組中數據的范圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據范圍很大的數組,需要大量時間和內存。比較適合用來排序==小范圍非負整數數組的數組==。
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:
同時,對於桶中元素的排序,選擇何種比較排序演算法對於性能的影響至關重要。
當輸入數據均勻分配到每一個桶時最快,當都分配到同一個桶時最慢。
實間復雜度N*K
快速排序是最快的通用排序演算法,它的內循環的指令很少,而且它還能利用緩存,因為它總是順序地訪問數據。它的運行時間近似為 ~cNlogN,這里的 c 比其它線性對數級別的排序演算法都要小。
使用三向切分快速排序,實際應用中可能出現的某些分布的輸入能夠達到線性級別,而其它排序演算法仍然需要線性對數時間。