導航:首頁 > 源碼編譯 > 回溯演算法求組合問題

回溯演算法求組合問題

發布時間:2022-12-16 07:37:37

㈠ 回溯演算法與貪心演算法

回溯是遞歸的副產品,只要有遞歸就會有回溯 ,所以回溯法也經常和二叉樹遍歷,深度優先搜索混在一起,因為這兩種方式都是用了遞歸。

回溯法就是暴力搜索,並不是什麼高效的演算法,最多再剪枝一下。

回溯演算法能解決如下問題:

組合問題:N個數裡面按一定規則找出k個數的集合

排列問題:N個數按一定規則全排列,有幾種排列方式

切割問題:一個字元串按一定規則有幾種切割方式

子集問題:一個N個數的集合里有多少符合條件的子集

棋盤問題:N皇後,解數獨等等

回溯演算法的本質是縱向遍歷

回溯演算法模板為

貪心的本質是選擇每一階段的局部最優,從而達到全局最優

貪心演算法一般分為如下四步:

將問題分解為若干個子問題

找出適合的貪心策略

求解每一個子問題的最優解

將局部最優解堆疊成全局最優解

eg:擺動序列

如果連續數字之間的差嚴格地在正數和負數之間交替,則數字序列稱為擺動序列。第一個差(如果存在的話)可能是正數或負數。少於兩個元素的序列也是擺動序列。

例如, [1,7,4,9,2,5] 是一個擺動序列,因為差值 (6,-3,5,-7,3) 是正負交替出現的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是擺動序列,第一個序列是因為它的前兩個差值都是正數,第二個序列是因為它的最後一個差值為零。

給定一個整數序列,返回作為擺動序列的最長子序列的長度。 通過從原始序列中刪除一些(也可以不刪除)元素來獲得子序列,剩下的元素保持其原始順序。

示例 2:

輸入: [1,17,5,10,13,15,10,5,16,8]

輸出: 7

解釋: 這個序列包含幾個長度為 7 擺動序列,其中一個可為[1,17,10,13,10,16,8]。

㈡ 回溯演算法的基本思想

回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。八皇後問題就是回溯演算法的典型,第一步按照順序放一個皇後,然後第二步符合要求放第2個皇後,如果沒有位置符合要求,那麼就要改變第一個皇後的位置,重新放第2個皇後的位置,直到找到符合條件的位置就可以了。回溯在迷宮搜索中使用很常見,就是這條路走不通,然後返回前一個路口,繼續下一條路。回溯演算法說白了就是窮舉法。不過回溯演算法使用剪枝函數,剪去一些不可能到達 最終狀態(即答案狀態)的節點,從而減少狀態空間樹節點的生成。回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。

java回溯法如何執行

回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。 1、回溯法的一般描述 可用回溯法求解的問題P,通常要能表達為:對於已知的由n元組(x1,x2,…,xn)組成的一個狀態空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關於n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。 解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。 我們發現,對於許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(j<i)元組(x1,x2,…,xj)一定也滿足D中僅涉及到x1,x2,…,xj的所有約束,i=1,2,…,n。換句話說,只要存在0≤j≤n-1,使得(x1,x2,…,xj)違反D中僅涉及到x1,x2,…,xj的約束之一,則以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)一定也違反D中僅涉及到x1,x2,…,xi的一個約束,n≥i>j。因此,對於約束集D具有完備性的問題P,一旦檢測斷定某個j元組(x1,x2,…,xj)違反D中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題P的解,因而就不必去搜索它們、檢測它們。回溯法正是針對這類問題,利用這類問題的上述性質而提出來的比枚舉法效率更高的演算法。 回溯法首先將問題P的n元組的狀態空間E表示成一棵高為n的帶權有序樹T,把在E中求問題P的所有解轉化為在T中搜索問題P的所有解。樹T類似於檢索樹,它可以這樣構造: 設Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。從根開始,讓T的第I層的每一個結點都有mi個兒子。這mi個兒子到它們的雙親的邊,按從左到右的次序,分別帶權xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照這種構造方式,E中的一個n元組(x1,x2,…,xn)對應於T中的一個葉子結點,T的根到這個葉子結點的路徑上依次的n條邊的權分別為x1,x2,…,xn,反之亦然。另外,對於任意的0≤i≤n-1,E中n元組(x1,x2,…,xn)的一個前綴I元組(x1,x2,…,xi)對應於T中的一個非葉子結點,T的根到這個非葉子結點的路徑上依次的I條邊的權分別為x1,x2,…,xi,反之亦然。特別,E中的任意一個n元組的空前綴(),對應於T的根。 因而,在E中尋找問題P的一個解等價於在T中搜索一個葉子結點,要求從T的根到該葉子結點的路徑上依次的n條邊相應帶的n個權x1,x2,…,xn滿足約束集D的全部約束。在T中搜索所要求的葉子結點,很自然的一種方式是從根出發,按深度優先的策略逐步深入,即依次搜索滿足約束條件的前綴1元組(x1i)、前綴2元組(x1,x2)、…,前綴I元組(x1,x2,…,xi),…,直到i=n為止。 在回溯法中,上述引入的樹被稱為問題P的狀態空間樹;樹T上任意一個結點被稱為問題P的狀態結點;樹T上的任意一個葉子結點被稱為問題P的一個解狀態結點;樹T上滿足約束集D的全部約束的任意一個葉子結點被稱為問題P的一個回答狀態結點,它對應於問題P的一個解。 【問題】 組合問題 問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。 例如n=5,r=3的所有組合為: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 則該問題的狀態空間為: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 約束集為: x1<x2<x3 顯然該約束集具有完備性。 問題的狀態空間樹T: 2、回溯法的方法 對於具有完備約束集D的一般問題P及其相應的狀態空間樹T,利用T的層次結構和D的完備性,在T中搜索問題P的所有解的回溯法可以形象地描述為: 從T的根出發,按深度優先的策略,系統地搜索以其為根的子樹中可能包含著回答結點的所有狀態結點,而跳過對肯定不含回答結點的所有子樹的搜索,以提高搜索效率。具體地說,當搜索按深度優先策略到達一個滿足D中所有有關約束的狀態結點時,即「激活」該狀態結點,以便繼續往深層搜索;否則跳過對以該狀態結點為根的子樹的搜索,而一邊逐層地向該狀態結點的祖先結點回溯,一邊「殺死」其兒子結點已被搜索遍的祖先結點,直到遇到其兒子結點未被搜索遍的祖先結點,即轉向其未被搜索的一個兒子結點繼續搜索。 在搜索過程中,只要所激活的狀態結點又滿足終結條件,那麼它就是回答結點,應該把它輸出或保存。由於在回溯法求解問題時,一般要求出問題的所有解,因此在得到回答結點後,同時也要進行回溯,以便得到問題的其他解,直至回溯到T的根且根的所有兒子結點均已被搜索過為止。 例如在組合問題中,從T的根出發深度優先遍歷該樹。當遍歷到結點(1,2)時,雖然它滿足約束條件,但還不是回答結點,則應繼續深度遍歷;當遍歷到葉子結點(1,2,5)時,由於它已是一個回答結點,則保存(或輸出)該結點,並回溯到其雙親結點,繼續深度遍歷;當遍歷到結點(1,5)時,由於它已是葉子結點,但不滿足約束條件,故也需回溯。 3、回溯法的一般流程和技術 在用回溯法求解有關問題的過程中,一般是一邊建樹,一邊遍歷該樹。在回溯法中我們一般採用非遞歸方法。下面,我們給出回溯法的非遞歸演算法的一般流程: 在用回溯法求解問題,也即在遍歷狀態空間樹的過程中,如果採用非遞歸方法,則我們一般要用到棧的數據結構。這時,不僅可以用棧來表示正在遍歷的樹的結點,而且可以很方便地表示建立孩子結點和回溯過程。 例如在組合問題中,我們用一個一維數組Stack[ ]表示棧。開始棧空,則表示了樹的根結點。如果元素1進棧,則表示建立並遍歷(1)結點;這時如果元素2進棧,則表示建立並遍歷(1,2)結點;元素3再進棧,則表示建立並遍歷(1,2,3)結點。這時可以判斷它滿足所有約束條件,是問題的一個解,輸出(或保存)。這時只要棧頂元素(3)出棧,即表示從結點(1,2,3)回溯到結點(1,2)。

㈣ Pascal演算法之回溯及遞推詳細介紹、

遞歸 遞歸是計算機科學的一個重要概念,遞歸的方法是程序設計中有效的方法,採用遞歸編寫程序能是程序變得簡潔和清晰.2.1 遞歸的概念
1.概念一個過程(或函數)直接或間接調用自己本身,這種過程(或函數)叫遞歸過程(或函數).如:procere a; begin . . . a; . . .end;這種方式是直接調用.又如: procere b; procere c; begin begin . . . . . . c; b; . . . . . .end; end;這種方式是間接調用.例1計算n!可用遞歸公式如下: 1 當 n=0 時 fac(n)={n*fac(n-1) 當n>0時可編寫程序如下:program fac2;varn:integer;function fac(n:integer):real;beginif n=0 then fac:=1 else fac:=n*fac(n-1)end;beginwrite('n=');readln(n);writeln('fac(',n,')=',fac(n):6:0);end.例2 樓梯有n階台階,上樓可以一步上1階,也可以一步上2階,編一程序計算共有多少種不同的走法.設n階台階的走法數為f(n)顯然有 1 n=1 f(n)={2 n=2 f(n-1)+f(n-2) n>2可編程序如下:program louti;var n:integer;function f(x:integer):integer;beginif x=1 then f:=1 elseif x=2 then f:=2 else f:=f(x-1)+f(x-2);end;beginwrite('n=');read(n);writeln('f(',n,')=',f(n))end.2.2 如何設計遞歸演算法
1.確定遞歸公式2.確定邊界(終了)條件練習:用遞歸的方法完成下列問題1.求數組中的最大數2.1+2+3+...+n3.求n個整數的積4.求n個整數的平均值5.求n個自然數的最大公約數與最小公倍數6.有一對雌雄兔,每兩個月就繁殖雌雄各一對兔子.問n個月後共有多少對兔子?7.已知:數列1,1,2,4,7,13,24,44,...求數列的第 n項. 2.3典型例題例3 梵塔問題 如圖:已知有三根針分別用1,2,3表示,在一號針中從小放n個盤子,現要求把所有的盤子 從1針全部移到3針,移動規則是:使用2針作為過度針,每次只移動一塊盤子,且每根針上不能出現大盤壓小盤.找出移動次數最小的方案. 程序如下:program fanta;varn:integer;procere move(n,a,b,c:integer);beginif n=1 then writeln(a,'--->',c)else beginmove(n-1,a,c,b);writeln(a,'--->',c);move(n-1,b,a,c);end;end;beginwrite('Enter n=');read(n);move(n,1,2,3);end.例4 快速排序快速排序的思想是:先從數據序列中選一個元素,並將序列中所有比該元素小的元素都放到它的右邊或左邊,再對左右兩邊分別用同樣的方法處之直到每一個待處理的序列的長度為1, 處理結束.程序如下:program kspv;
const n=7;
type
arr=array[1..n] of integer;
var
a:arr;
i:integer;
procere quicksort(var b:arr; s,t:integer);
var i,j,x,t1:integer;
begin
i:=s;j:=t;x:=b[i];
repeat
while (b[j]>=x) and (j>i) do j:=j-1;
if j>i then begin t1:=b[i]; b[i]:=b[j];b[j]:=t1;end;
while (b[i]<=x) and (i<j) do i:=i+1;
if i<j then begin t1:=b[j];b[j]:=b[i];b[i]:=t1; end
until i=j;
b[i]:=x;
i:=i+1;j:=j-1;
if s<j then quicksort(b,s,j);
if i<t then quicksort(b,i,t);
end;
begin
write('input data:');
for i:=1 to n do read(a[i]);
writeln;
quicksort(a,1,n);
write('output data:');
for i:=1 to n do write(a[i]:6);
writeln;
end.練習:1.計算ackerman函數值: n+1 m=0 ack(m,n)={ ack(m-1,1) m<>0 ,n=0 ack(m-1,ack(m,n-1)) m<>0,n<>0 求ack(5,4)
回溯 回溯是按照某種條件往前試探搜索,若前進中遭到失敗,則回過頭來另擇通路繼續搜索.3.1 回溯的設計 1.用棧保存好前進中的某些狀態.2.制定好約束條件例1由鍵盤上輸入任意n個符號;輸出它的全排列.program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;
end;
begin
input;
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.例2.n個皇後問題:program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
begin
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;end.回溯演算法的公式如下:3.2 回溯演算法的遞歸實現由於回溯演算法用一棧數組實現的,用到棧一般可用遞歸實現。上述例1的遞歸方法實現如下:program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;readln;
end;
procere try(k:integer);
var i :integer;
begin
if k=n+1 then begin print;exit end;
for i:=1 to n do
begin
x[k]:=i;
if place(k) then try(k+1)
end
end;
begin
input;
try(1);
end.例2:n皇後問題的遞歸演算法如下:程序1:program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
procere try(k:integer);
var i:integer;
begin
if k=n+1 then begin print; exit end;
for i:= 1 to n do
begin
x[k]:=i;
if place(k) then try(k+1);
end;
end ;
begin
try(1);
end.程序2:說明:當n=8 時有30條對角線分別用了l和r數組控制,用c數組控制列.當(i,j)點放好皇後後相應的對角線和列都為false.遞歸程序如下:program nhh;
const n=8;
var s,i:integer;
a:array[1..n] of byte;
c:array[1..n] of boolean;
l:array[1-n..n-1] of boolean;
r:array[2..2*n] of boolean;
procere output;
var i:integer;
begin
for i:=1 to n do write(a[i]:4);
inc(s);writeln(' total=',s);
end;
procere try(i:integer);
var j:integer;
begin
for j:=1 to n do
begin
if c[j] and l[i-j] and r[i+j] then
begin
a[i]:=j;c[j]:=false;l[i-j]:=false; r[i+j]:=false;
if i<n then try(i+1) else output;
c[j]:=true;l[i-j]:=true;r[i+j]:=true;
end;
end;
end;
begin
for i:=1 to n do c[i]:=true;
for i:=1-n to n-1 do l[i]:=true;
for i:=2 to 2*n do r[i]:=true;
s:=0;try(1);
writeln;
end.練習:1.找出所有從m個元素中選取n(n<=m)元素的組合。2.設有A,B,C,D,E 5人從事j1,j2,j3,j4,j5 5項工作每人只能從事一項,它們的效益表如下:求最佳安排,使效益最高.3.N個數中找出M個數(從鍵盤上輸入正整數N,M後再輸入N個正數),要求從N個數中找出若干個數,使它們的和為M,把滿足條件的數組找出來,並統計組數.4.地圖著色。如下圖12個區域用4種顏色著色要求相鄰的區域著不同的顏色5.將任意一正整數(1<n<100)分解成若干正整數的和. 如:4=1+1+1+1 =2+1+1 =2+2 =3+1.

㈤ 常見演算法思想6:回溯法

回溯法也叫試探法,試探的處事方式比較委婉,它先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一進行枚舉和檢驗。當發現當前候選解不可能是正確的解時,就選擇下一個候選解。如果當前候選解除了不滿足問題規模要求外能夠滿足所有其他要求時,則繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在試探演算法中,放棄當前候選解,並繼續尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。

(1)針對所給問題,定義問題的解空間。
(2)確定易於搜索的解空間結構。
(3)以深度優先方式搜索解空間,並在搜索過程中用剪枝函數避免無效搜索。

回溯法為了求得問題的正確解,會先委婉地試探某一種可能的情況。在進行試探的過程中,一旦發現原來選擇的假設情況是不正確的,馬上會自覺地退回一步重新選擇,然後繼續向前試探,如此這般反復進行,直至得到解或證明無解時才死心。

下面是回溯的3個要素。
(1)解空間:表示要解決問題的范圍,不知道範圍的搜索是不可能找到結果的。
(2)約束條件:包括隱性的和顯性的,題目中的要求以及題目描述隱含的約束條件,是搜索有解的保證。
(3)狀態樹:是構造深搜過程的依據,整個搜索以此樹展開。

下面是影響演算法效率的因素:

回溯法搜索解空間時,通常採用兩種策略避免無效搜索,提高回溯的搜索效率:

為縮小規模,我們用顯示的國際象棋8*8的八皇後來分析。按照國際象棋的規則,皇後的攻擊方式是橫,豎和斜向。
皇後可以攻擊到同一列所有其它棋子,因此可推導出每1列只能存在1個皇後,即每個皇後分別占據一列。棋盤一共8列,剛好放置8個皇後。

為了擺放出滿足條件的8個皇後的布局,可以按如下方式逐步操作:

把規模放大到N行N列也一樣,下面用回溯法解決N皇後問題:

執行:

閱讀全文

與回溯演算法求組合問題相關的資料

熱點內容
雲伺服器app安卓下載 瀏覽:966
如何查看linux伺服器的核心數 瀏覽:137
交易平台小程序源碼下載 瀏覽:148
程序員記筆記用什麼app免費的 瀏覽:646
java與單片機 瀏覽:897
伺服器內網如何通過公網映射 瀏覽:478
程序員穿越到宋代 瀏覽:624
怎麼使用雲伺服器掛游戲 瀏覽:618
真實的幸福pdf 瀏覽:344
d盤php調用c盤的mysql 瀏覽:266
怎麼樣搭建源碼網站 瀏覽:429
新概念四冊pdf 瀏覽:363
怎麼下載悅虎檢測app 瀏覽:530
cad表達式命令 瀏覽:200
程序員去一個小公司值不值得 瀏覽:848
程序員做個程序多少錢 瀏覽:497
win10原始解壓軟體 瀏覽:321
阿里程序員的老家 瀏覽:260
量子加密銀行 瀏覽:195
命令方塊獲得指令手機 瀏覽:501