『壹』 編譯原理
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象[1]。
中文名
編譯原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
領域
計算機專業的一門重要專業課[1]
快速
導航
編譯器
編譯原理課程
編譯技術的發展
編譯的基本流程
編譯過程概述
基本概念
編譯原理即是對高級程序語言進行翻譯的一門科學技術, 我們都知道計算機程序由程序語言編寫而成, 在早期計算機程序語言發展較為緩慢, 因為計算機存儲的數據和執行的程序都是由0、1代碼組合而成的, 那麼在早期程序員編寫計算機程序時必須十分了解計算機的底層指令代碼通過將這些微程序指令組合排列從而完成一個特定功能的程序, 這就對程序員的要求非常高了。人們一直在研究如何如何高效的開發計算機程序, 使編程的門檻降低。[2]
編譯器
C語言編譯器是一種現代化的設備, 其需要藉助計算機編譯程序, C語言編譯器的設計是一項專業性比較強的工作, 設計人員需要考慮計算機程序繁瑣的設計流程, 還要考慮計算機用戶的需求。計算機的種類在不斷增加, 所以, 在對C語言編譯器進行設計時, 一定要增加其適用性。C語言具有較強的處理能力, 其屬於結構化語言, 而且在計算機系統維護中應用比較多, C語言具有高效率的優點, 在其不同類型的計算機中應用比較多。[3]
C語言編譯器前端設計
編譯過程一般是在計算機系統中實現的, 是將源代碼轉化為計算機通用語言的過程。編譯器中包含入口點的地址、名稱以及機器代碼。編譯器是計算機程序中應用比較多的工具, 在對編譯器進行前端設計時, 一定要充分考慮影響因素, 還要對詞法、語法、語義進行分析。[3]
1 詞法分析[3]
詞法分析是編譯器前端設計的基礎階段, 在這一階段, 編譯器會根據設定的語法規則, 對源程序進行標記, 在標記的過程中, 每一處記號都代表著一類單詞, 在做記號的過程中, 主要有標識符、關鍵字、特殊符號等類型, 編譯器中包含詞法分析器、輸入源程序、輸出識別記號符, 利用這些功能可以將字型大小轉化為熟悉的單詞。[3]
2 語法分析[3]
語法分析是指利用設定的語法規則, 對記號中的結構進行標識, 這包括句子、短語等方式, 在標識的過程中, 可以形成特殊的結構語法樹。語法分析對編譯器功能的發揮有著重要影響, 在設計的過程中, 一定要保證標識的准確性。[3]
3 語義分析[3]
語義分析也需要藉助語法規則, 在對語法單元的靜態語義進行檢查時, 要保證語法規則設定的准確性。在對詞法或者語法進行轉化時, 一定要保證語法結構設置的合法性。在對語法、詞法進行檢查時, 語法結構設定不合理, 則會出現編譯錯誤的問題。前端設計對精確性要求比較好, 設計人員能夠要做好校對工作, 這會影響到編譯的准確性, 如果前端設計存在失誤, 則會影響C語言編譯的效果。[3]
『貳』 匯編編譯器工作原理
首先這個一一對應的關系是確定的
其次匯編編譯就是簡單對應和少量計算,就是查一個特別大的表而已
具體可以了解一下編譯原理(這是個大坑,慎入)
『叄』 C語言編譯原理是什麼
編譯共分為四個階段:預處理階段、編譯階段、匯編階段、鏈接階段。
1、預處理階段:
主要工作是將頭文件插入到所寫的代碼中,生成擴展名為「.i」的文件替換原來的擴展名為「.c」的文件,但是原來的文件仍然保留,只是執行過程中的實際文件發生了改變。(這里所說的替換並不是指原來的文件被刪除)
2、匯編階段:
插入匯編語言程序,將代碼翻譯成匯編語言。編譯器首先要檢查代碼的規范性、是否有語法錯誤等,以確定代碼的實際要做的工作,在檢查無誤後,編譯器把代碼翻譯成匯編語言,同時將擴展名為「.i」的文件翻譯成擴展名為「.s」的文件。
3、編譯階段:
將匯編語言翻譯成機器語言指令,並將指令打包封存成可重定位目標程序的格式,將擴展名為「.s」的文件翻譯成擴展名為「.o」的二進制文件。
4、鏈接階段:
在示例代碼中,改代碼文件調用了標准庫中printf函數。而printf函數的實際存儲位置是一個單獨編譯的目標文件(編譯的結果也是擴展名為「.o」的文件),所以此時主函數調用的時候,需要將該文件(即printf函數所在的編譯文件)與hello world文件整合到一起,此時鏈接器就可以大顯神通了,將兩個文件合並後生成一個可執行目標文件。
『肆』 編譯器的工作原理
編譯 是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器語言)的翻譯過程。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的EXE,
所以我們電腦上的文件都是經過編譯後的文件。
『伍』 編譯器的發展史
編譯器
編譯器,是將便於人編寫,閱讀,維護的高級計算機語言翻譯為計算機能識別,運行的低級機器語言的程序。編譯器將源程序(Source program)作為輸入,翻譯產生使用目標語言(Target language)的等價程序。源程序一般為高級語言(High-level language),如Pascal,C++等,而目標語言則是匯編語言或目標機器的目標代碼(Object code),有時也稱作機器代碼(Machine code)。
一個現代編譯器的主要工作流程如下:
源程序(source code)→預處理器(preprocessor)→編譯器(compiler)→匯編程序(assembler)→目標程序(object code)→連接器(鏈接器,Linker)→可執行程序(executables)
目錄 [隱藏]
1 工作原理
2 編譯器種類
3 預處理器(preprocessor)
4 編譯器前端(frontend)
5 編譯器後端(backend)
6 編譯語言與解釋語言對比
7 歷史
8 參見
工作原理
翻譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器言)。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。
編譯器種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源程序,由詞法分析器和語法分析器協同工作。詞法分析器負責把源程序中的『單詞』(Token)找出來,語法分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端詞法分析器看到的是「a, =, b , +, c;」,語法分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化,處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。
編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源程序的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源程序的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。
常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的 變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。
上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。
編譯語言與解釋語言對比
許多人將高級程序語言分為兩類: 編譯型語言 和 解釋型語言 。然而,實際上,這些語言中的大多數既可用編譯型實現也可用解釋型實現,分類實際上反映的是那種語言常見的實現方式。(但是,某些解釋型語言,很難用編譯型實現。比如那些允許 在線代碼更改 的解釋型語言。)
歷史
上世紀50年代,IBM的John Backus帶領一個研究小組對FORTRAN語言及其編譯器進行開發。但由於當時人們對編譯理論了解不多,開發工作變得既復雜又艱苦。與此同時,Noam Chomsky開始了他對自然語言結構的研究。他的發現最終使得編譯器的結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法的難易程度以及識別它們所需要的演算法來對語言分類。正如現在所稱的Chomsky架構(Chomsky Hierarchy),它包括了文法的四個層次:0型文法、1型文法、2型文法和3型文法,且其中的每一個都是其前者的特殊情況。2型文法(或上下文無關文法)被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。分析問題(parsing problem,用於上下文無關文法識別的有效演算法)的研究是在60年代和70年代,它相當完善的解決了這個問題。現在它已是編譯原理中的一個標准部分。
有限狀態自動機(Finite Automaton)和正則表達式(Regular Expression)同上下文無關文法緊密相關,它們與Chomsky的3型文法相對應。對它們的研究與Chomsky的研究幾乎同時開始,並且引出了表示程序設計語言的單詞的符號方式。
人們接著又深化了生成有效目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其稱為優化技術(Optimization Technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(Code Improvement Technique)。
當分析問題變得好懂起來時,人們就在開發程序上花費了很大的功夫來研究這一部分的編譯器自動構造。這些程序最初被稱為編譯器的編譯器(Compiler-compiler),但更確切地應稱為分析程序生成器(Parser Generator),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年為Unix系統編寫的。類似的,有限狀態自動機的研究也發展了一種稱為掃描程序生成器(Scanner Generator)的工具,Lex(與Yacc同時,由Mike Lesk為Unix系統開發)是這其中的佼佼者。
在70年代後期和80年代早期,大量的項目都貫注於編譯器其它部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
編譯器設計最近的發展包括:首先,編譯器包括了更加復雜演算法的應用程序它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言的發展結合在一起。其中典型的有用於函數語言編譯的Hindley-Milner類型檢查的統一演算法。其次,編譯器已越來越成為基於窗口的交互開發環境(Interactive Development Environment,IDE)的一部分,它包括了編輯器、連接程序、調試程序以及項目管理程序。這樣的IDE標准並沒有多少,但是對標準的窗口環境進行開發已成為方向。另一方面,盡管近年來在編譯原理領域進行了大量的研究,但是基本的編譯器設計原理在近20年中都沒有多大的改變,它現在正迅速地成為計算機科學課程中的中心環節。
在九十年代,作為GNU項目或其它開放源代碼項目的一部分,許多免費編譯器和編譯器開發工具被開發出來。這些工具可用來編譯所有的計算機程序語言。它們中的一些項目被認為是高質量的,而且對現代編譯理論感性趣的人可以很容易的得到它們的免費源代碼。
大約在1999年,SGI公布了他們的一個工業化的並行化優化編譯器Pro64的源代碼,後被全世界多個編譯器研究小組用來做研究平台,並命名為Open64。Open64的設計結構好,分析優化全面,是編譯器高級研究的理想平台。
編譯器是一種特殊的程序,它可以把以特定編程語言寫成的程序變為機器可以運行的機器碼。我們把一個程序寫好,這時我們利用的環境是文本編輯器。這時我程序把程序稱為源程序。在此以後程序員可以運行相應的編譯器,通過指定需要編譯的文件的名稱就可以把相應的源文件(通過一個復雜的過程)轉化為機器碼了。
編譯器工作方法
首先編譯器進行語法分析,也就是要把那些字元串分離出來。然後進行語義分析,就是把各個由語法分析分析出的語法單元的意義搞清楚。最後生成的是目標文件,我們也稱為obj文件。再經過鏈接器的鏈接就可以生成最後的可執行代碼了。有些時候我們需要把多個文件產生的目標文件進行鏈接,產生最後的代碼。我們把一過程稱為交叉鏈接。
『陸』 交叉編譯器的原理
編譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低階語言或機器語言)的翻譯過程。然而,也存在從低階語言到高階語言的編譯器,這類編譯器中用來從由高階語言生成的低階語言代碼重新生成高階語言代碼的又被叫做反編譯器。也有從一種高階語言生成另一種高階語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。
『柒』 linux下c語言編譯器的工作原理是怎麼樣的/
c語言編譯器的工作原理都差不多的。一般來說分為四個階斷;
1、預處理階斷,主要是文本替換操作。有預處理器完成。
2、編譯階斷,將C源碼生成匯編代碼,這個是有C語言編譯器來完成的,默認linux下是cc。
3、匯編階斷,將匯編代碼,生成相應的可執行體,即二進制文件。
這個過程都可以自己通過給gcc加入參數來詳細的獲取這些過程的,具體可以參考:http://jingyan..com/article/03b2f78c1d6ede5ea237aed7.html
『捌』 編譯器有哪幾部分構成.編譯原理
1. 詞法分析
詞法分析器根據詞法規則識別出源程序
中的各個記號(token),每個記號代表一類單詞(lexeme)。源程序中常見的記號可以歸為幾大類:關鍵字、標識符、字面量和特殊符號。詞法分析器
的輸入是源程序,輸出是識別的記號流。詞法分析器的任務是把源文件的字元流轉換成記號流。本質上它查看連續的字元然後把它們識別為「單詞」。
2. 語法分析
語法分析器根據語法規則識別出記號流中的結構(短語、句子),並構造一棵能夠正確反映該結構的語法樹。
3. 語義分析
語義分析器根據語義規則對語法樹中的語法單元進行靜態語義檢查,如果類型檢查和轉換等,其目的在於保證語法正確的結構在語義上也是合法的。
4. 中間代碼生成
中間代碼生成器根據語義分析器的輸出生成中間代碼。中間代碼可以有若干種形式,它們的共同特徵是與具體機器無關。最常用的一種中間代碼是三地址碼,它的一種實現方式是四元式。三地址碼的優點是便於閱讀、便於優化。
『玖』 C語言編譯器原理小知識
1、char *p="asdf"; 則sizeof(p)=2; 是返回指針p佔用位元組數;即使你是先定義再賦值,char *p; p="asdfasdf"; sizeof(p)都是等於2;任何指針在turbo c中都是2個位元組,不是說「字元串中有'0\'佔一個位元組,字元類型指針佔一個位元組」。。樓上有的說sizeof(p)是求變數p或字元串長度,是錯的,是求佔用位元組數,不是長度,長度是用函數strlen(p); sizeof不是函數,是一種運算符。。例子:char p[]="abc";則sizeof(p)=4;strlen(p)=3; 比較於char p[10]="abc"; sizeof(p)=10; strlen(p)=3。。。 但如果定義成:char p[]="asdf"; 則sizeof(p);就等於5了,數組名p雖然可以看做指針,但不完全跟指針一樣,這就是例子了。。 2、編譯器可以看作一個虛擬機器,可以有自己虛擬的內存,棧等。。編譯系統就可以看作是物理電腦操作系統上虛擬機的運行系統。。所以不一定是物理地址,但跟物理地址有映射關系,至於為什麼,怎麼映射,我也不知道。。。 3、編譯器是16位。。跟「loat 為4個位元組 double 32個字元」??。。跟float 4位元組32位沒關系,那是編譯器設定的,就是常說電腦是16位或32位操作系統一樣,編譯器16位就看作虛擬機器是16位運行系統。。 4、 我也不知道為什麼, (*p)(int,int);是int (*p)(int,int);吧。。。
『拾』 編譯器的自舉原理是什麼
編譯器的所有自舉原理主要是和代碼和優化有關,運行庫是C++語言寫的,產生的目標代碼肯定是會與運行平台一致的,如果不一致,也沒辦法進行自舉。