導航:首頁 > 源碼編譯 > 江西ai演算法定製

江西ai演算法定製

發布時間:2022-12-17 16:14:39

『壹』 成為一名 AI 演算法工程師,你需要具備哪些能力

這是一篇關於如何成為一名 AI 演算法工程師的長文~經常有朋友私信問,如何學 python 呀,如何敲代碼呀,如何進入 AI 行業呀?這里總結了成為AI演算法工程師所需要掌握的一些要點,看看你距離成為一名 AI 工程師還有多遠吧~

一、程序編寫
如同大部分應用軟體程序流程的開發設計一樣,開發者也在應用多語種來撰寫人工智慧技術新項目,可是如今都還沒一切一種極致的計算機語言是能夠 徹底大聖配人工智慧技術新項目的。計算機語言的挑選通常在於對人工智慧技術程序流程的期待作用。
因為其英語的語法,簡易性和多功能化,Python變成開發者最愛的人工智慧技術開發設計計算機語言。Python最觸動內心的地區之一就是說攜帶型,它能夠 在Linux、Windows、MacOS和UNIX等服務平台上應用。容許客戶建立互動式的、表述的、模塊化設計的、動態性的、可移植的和高級的編碼。
此外,Python是一種多現代性計算機語言,適用面向對象編程,全過程式和作用式程序編寫設計風格。因為其簡易的函數庫和理想化的構造,Python適用神經元網路和NLP解決方法的開發設計。
變成一個達標的AI數據工程師必須靈活運用python基本英語的語法、python句子和表述句、python中的涵數與控制模塊、python面向對象編程及其python文字實際操作。把握面向對象編程數據信息編程技術,都是為中後期的AI學習培訓奠定扎扎實實的程序編寫工作能力。
二、數學課
要學習培訓人工智慧技術,最基礎的高數、線代、摡率論務必把握,最少也得會高斯函數、矩陣求導,搞清楚梯度下降是什麼原因,不然針對實體模型的基本概念徹底不可以了解,實體模型調參加訓煉也就無從說起了。
高數
高數必須把握的有關內容包含涵數、數列、極限、最後、極值與最值、威廉姆斯指數值和系數。
線性代數
線性代數的內容包含行列式、引流矩陣、最小二乘法、矢量的線性相關性、引流矩陣的初等變換和秩、線性方程組的解和矩陣特徵值
概率統計
概率統計里的惡性事件、幾率、貝葉斯定理、概率分布、期待與方差與參數估計
了解數學思維訓練管理體系在深度神經網路中的運用,能夠 了解深度神經網路中常見的數學函數公式,可以用python程序編寫保持常見的數學課優化演算法。
三、深度神經網路
深度神經網路一部分包含MLP實體模型、CNN卷積神經網路、RNN循環系統神經元網路、GAN生成式抵抗神經元網路等。
MLP實體模型
必須具有了解雙層感知機的運作全過程和基本原理,並可以構建雙層感知機實體模型。
CNN卷積神經網路
把握怎麼使用CNN互聯網解決室內空間難題,如照片、視頻等數據信息。了解卷積、池化,及其反卷積、反池化的全過程和基本原理。而且可以構建有關的卷積互聯網實體模型。
RNN循環系統神經元網路
把握怎麼使用RNN解決時間序列難題,如智能化回復、智能翻譯等。了解循環系統神經元網路RNN和LSTM、GRU的運作全過程和基本原理。可以構建有關的循環系統神經網路模型訓煉與提升。
GAN生成式抵抗神經元網路
讓神經元網路具有造就工作能力,了解生成式抵抗神經元網路和其變異互聯網的基本原理,並可以構建變分自編號的互聯網實體模型訓煉和提升,可保持圖象轉化成、視頻語音轉化成等。
四、新項目實戰演練
開展一些新項目實戰演練針對你的工作經驗累積是十分有利的。
人工智慧技術圖象/視覺行業數據工程師應當具有的新項目實踐經驗:YOLOV3多物塊跟蹤/CenterLoss圖像識別技術/Mask-RCNN圖像分割。
可以解決多總體目標跟蹤,圖像識別技術、圖象隔開、圖象核對等應用領域新項目。而且根據新項目能學得許多 工程項目方法,具體新項目中訓煉實體模型的方式 和調參的工作經驗。掌握了這些,你的AI演算法工程師之路就能更近一步啦~
 

『貳』 抖音ai繪畫的演算法有哪些

抖音應用的ai技術,抖音快手ai演算法機制有哪些
1.
物體/動作檢測技術 這一類應該是最早應用在短視頻內容創作上的,包括很多自拍相機也有類似的功能。比如眨眼睛、吐舌頭、比各種手勢來觸發一些特效,這些是基於人臉的。同理,基於一些生活中的圖標、物體檢測來觸發一些特效。 圖2 比心特效
2.
美顏、美妝、美體、美牙等人像美化功能

『叄』 AI教育靠譜嗎現在發展怎麼樣

AI教育是靠譜的,是科技帶動教育的產物。但是效果卻是因人而異的,建議各位家長可以帶孩子去嘗試看看。

想要達到更好的教育效果,這里優先推薦在線一對一培訓,足不出戶就能讓孩子跟著專業外教一對一學習。為了給大家更好的體驗,咱們阿卡索推出了免費外教大禮包給大家,內含外教課一節還能免費測試英語水平,大家感興趣的可以去試聽一下:【點擊領取免費外教一對一試課】,咱們的外教是100%擁有證書的,各位可以放心試課。

如果試課覺得不錯的話,各位可以往下再看看阿卡索的優勢了:

1.師資力量

阿卡索在線英語外教,有著地道的發音,在口語和語法上有先天優勢,能保證孩子能接觸到最純正的英語口音和英語知識。

2.學習教材
阿卡索的教材一來是能緊跟美國教材的步伐來制定學習教材,二是能結合中國孩子的特性來制定學習內容,教學資源還是比較豐富的。

3.上課模式

阿卡索在線英語外教,採用外教一對一教學模式,可以讓老師把更多的精力放在孩子身上,這樣也有利於老師專注於孩子個人的英語教育。

4.收費價格
咱們家一年的費用還不到7千元,課均還不到20元,絕不亂收費,各位可以放心選擇!!!

如果你想要免費獲取全網最齊全的英語資源,歡迎網路搜索:阿卡索官網論壇 。專注於打造中國英語學習資源分享網站。內容十分豐富,包含少兒英語、英語口語聽力、英語四六級、新概念、商務英語等免費資源下載。

『肆』 演算法在研發階段,對AI數據標注行業有什麼樣的需求

研發階段是對新建演算法的訓練。在這個階段,演算法經歷了從0到1的過程,對數據量級需求較大,初期多採用標准數據集產品訓練,中後期則需要專業的數據定製采標服務。

『伍』 仿生智能演算法與ai晶元的關系

仿生智能演算法與ai晶元的關系

仿生智能演算法是軟體,ai晶元是硬體。
仿生智能,從字面的意思上我們就能了解到其本質的概貌,「仿生」就是盡可能滴模模擬正人體,「智能」就是它要能夠明白想要做什麼,同時它又可以通過一些軟體的方式,來實現一些個人的定製化的功能。進而為人類服務。

『陸』 人工智慧需要什麼基礎

1、核心三要素——算力、演算法、數據(三大基石):

演算法、算力、數據作為人工智慧(AI)核心三要素,相互影響,相互支撐,在不同行業中形成了不一樣的產業形態。隨著演算法的創新、算力的增強、數據資源的累積,傳統基礎設施將藉此東風實現智能化升級,並有望推動經濟發展全要素的智能化革新。讓人類社會從信息化進入智能化。


(1)算力:



在AI技術當中,算力是演算法和數據的基礎設施,支撐著演算法和數據,進而影響著AI的發展,算力的大小代表著對數據處理能力的強弱。

(2)演算法:

演算法是AI的背後「推手」。



AI演算法是數據驅動型演算法,是AI的推動力量。

(3)數據:

在AI技術當中,數據相當於AI演算法的「飼料」。

機器學習中的監督學習和半監督學習都要用標注好的數據進行訓練,由此催生了大量數據標注公司,它們將處於未經處理的初級數據,轉換為機器可識別信息。只有經過大量的訓練,覆蓋盡可能多的各種場景才能得到一個良好的模型。


2、技術基礎:

(1)文藝復興後的人工神經網路。

人工神經網路是一種仿造神經元運作的函數演算,能接受外界資訊輸入的刺激,且根據不同刺激影響的權重轉換成輸出的反應,或用以改變內部函數的權重結構,以適應不同環境的數學模型。


(2)靠巨量數據運作的機器學習。

科學家發現,要讓機器有智慧,並不一定要真正賦予它思辯能力,可以大量閱讀、儲存資料並具有分辨的能力,就足以幫助人類工作。


(3)人工智慧的重要應用:自然語言處理。

自然語言處理的研究,是要讓機器「理解」人類的語言,是人工智慧領域里的其中一項重要分支。

自然語言處理可先簡單理解分為進、出計算機等兩種:

其一是從人類到電腦──讓電腦把人類的語言轉換成程式可以處理的型式;

其二是從電腦回饋到人──把電腦所演算的成果轉換成人類可以理解的語言表達出來。

『柒』 如何成為AI人工智慧演算法工程師

我在學校也打了python,做了一個履帶式演示或類似的東西,因為時間不長,我把它放在一旁。明確的目標,例如,如果您想進行NLP,則需要知道NLP的應用程序具有智能的問題解答,機器翻譯,搜索引擎等。然後,如果要進行智能問題解答,則必須知道最先進的技術是深度學習,並且使用的演算法是RNN/LSTM/Seq2Seq
/等。我明確的目標是在實習期間給我任務。當任務清晰時,所需的語言就清晰了,要學習的演算法也就清晰了,並且很多事情都是合乎邏輯的。

從金融到技術
人工智慧的應用非常廣泛,每個研究方向都是無限的。由於金融公司很少與圖像處理和諸如NLP之類的技術進行交互,因此我強烈的好奇心使我決定去純粹的技術公司進行調查。致力於智能家居,目標是Javis
人工智慧/機器學習/深度學習
我經常在公交車的廣告牌上看到這些字眼,好像沒有該技術的公司會落後一樣。還有各種學習,例如強化學習,遷移學習,增量學習。
這些話之間是什麼關系機器學習是人工智慧的一種,而深度學習是機器學習的一種。在學習機器學習之前先學習AI。
計算機「演算法」與數學「演算法」之間的區別
理論知識對於AI演算法工程師來說非常重要。敲代碼只是想法的實現過程。這里的「演算法」與計算機CS的「演算法」不同。
AI演算法是從數學上推導的,因此仍然需要學習數學基礎。學習越深入,要求越高。在面試期間,極少允許使用手寫代碼,並且90%的人要求模型挑選演算法細節。
在學校里,我是一個不喜歡做筆記的人,甚至是一個不喜歡上課的人。但是自從我進入機器學習之路以來,筆記就開始騰飛了〜

『捌』 各類場景應用中涉及的AI演算法匯總

整理了各類場景應用中AI演算法

一、圖像CV

內容安全,目標檢測,圖像識別,智能視覺生產,圖像搜索,圖像分割,物體檢測,圖像分類,圖像標簽,名人識別,概念識別,場景識別,物體識別,場景分析,智能相冊,內容推薦,圖庫管理,網紅人物識別,明星人物識別,圖像搜索,商品圖片搜索,版權圖片搜索,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,菜品識別,車型識別,犬類識別,實例分割,風格遷移,智能填充,智能識圖,拍照搜商品,精準廣告投放,電商導購,圖像分析,圖像理解,圖像處理,圖像質量評估,場景識別,物體識別,場所識別,圖像自訓練平台,圖像分類,目標檢測,圖像分割,關鍵點檢測,圖像生成,場景文字識別,度量學習,圖像識別,圖像比對,圖像分類使用手冊,圖像分類API文檔目標檢測使用手冊,目標檢測API文檔Logo檢測使用手冊,Logo檢測API文檔,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,車型識別,犬類識別,實例分割,風格遷移,智能填充,車牌識別,相冊聚類,場景與物體識別,無限天空,圖像識別引擎,黃色圖片識別,暴力圖像識別,工業輪胎智能檢測,肋骨骨折識別,顯微識別,圖像處理,廣告識別,人臉演算法,人體演算法,圖像識別,圖像增強,OCR,圖像處理,ZoomAI,智能貼圖,智能製作,質量評價,圖像識別,智能鑒黃,圖像識別,實時手寫識別,唇語識別,通用文字識別,手寫文字識別,圖像技術,圖像識別,圖像審核,圖像搜索,圖像增強,圖像特效,車輛分析,圖像生成,繪畫機器人獨家,動漫化身獨家,像素風獨家,超清人像獨家,圖像融合,換臉技術,神奇變臉,圖像風格化,證件照生成,線稿圖像識別,寶寶檢測,圖像分類,圉像深度估計,天空分割,食物分割,貓狗臉技術,食物識別獨家,圖像美學評分,車輛分析,車型識別,車型識別(含指導價),車型識別(含配置參數),車標識別,人臉識別(活體),車牌識別,表情識別,安全帽識別,計算機影像,計算機視覺,聚焦光學字元識別、人臉識別、質檢、感知、理解、交互,圖像視頻分析,Logo檢測,內容審核,智能批改,筆記評估,思維導圖評估,物體檢測,物體識別。

二、人臉、體態、眼瞳、聲音、指紋

人臉分割人臉識別,無,人體分析HAS,識別人的年齡,性別,穿著信息,客流統計分析,智能客服,熱點區域分析,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,換臉甄別,人臉支付,人臉核身,人像變換,人臉試妝,人臉融合,人體分析,手勢識別,人臉驗證與檢索,人臉比對,人臉比對sensetime,人臉水印照比對,靜默活體檢測,靜默活體檢測sensetime,人臉檢測和屬性分析,人臉特徵分析tuputech,配合式活體檢測,人臉安防,計算機視覺,智能應用服務,人臉查詢人臉分析人臉統計名單庫管理人臉布控,人臉應用,人體應用,人體查詢,車輛查詢車輛分析車輛統計車輛布控車輛名單庫管理,車輛應用,人臉圖像識別人體圖像識別車輛圖像識別,圖像識別,圖像比對,人臉比對,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,人臉檢測,人臉比對,人臉搜索,人臉關鍵點,稠密關鍵點,人臉屬性,情緒識別,顏值評分,視線估計,皮膚分析,3D人臉重建,面部特徵分析人體識別,人體檢測,人體關鍵點,人體摳像,人體屬性,手勢識別人像處理,美顏美型,人臉融合,濾鏡,聲紋識別支付,語音合成,語音合成,聲紋識別,語音喚醒,人臉識別引擎,攝像頭人臉識別,圖片人臉檢測,身份識別,人臉識別,人臉屬性,人體識別,聲紋識別,衣服檢索及聚類,語音分析,聲紋識別,說話人歸檔,人臉和人體識別,人臉檢測,手勢識別,人臉與人體識別,人臉識別雲服務,人臉識別私有化,人臉離線識別SDK,人臉實名認證,人像特效,人體分析,人臉技不,皮膚分析獨家,頭部分割,宏觀人臉分析,人臉關鍵點檢測,微觀人臉分析獨家,頭發分析獨家,五官分割,頭發分割人體技術,人體外輪廓點檢測獨家,精細化人像摳圖,人體框檢測,肢體關鍵點檢測,人像分割,服飾識別,手勢識別,皮膚分割,人臉,說話人識別,人臉檢測識別,人臉1:1比對,人臉檢測,AI人臉/人形車輛,大數據人像圖片防偽,QoS保障,CDN,表情識別,舉手動作識別,人臉檢測,網路切片,邊緣計算,人臉分析,人臉檢測,人臉搜索,人體分析,手勢識別,著裝檢測,人臉識別,行為檢測,人臉識別,人形檢測,行為分析,人臉檢測,人臉跟蹤,人臉比對,人臉查找,人臉屬性分析,活體檢測,聲音指紋,聲紋識別。

三、視頻

視頻分割、視頻處理、視頻理解、智能視覺、多媒體,視頻內容分析,人體動作監控,視頻分類,智能交通,人/動物軌跡分析,目標計數,目標跟蹤,視頻編輯-,精彩片段提取,新聞視頻拆分,視頻摘要,視頻封面,視頻拆條,視頻標簽-,視頻推薦,視頻搜索,視頻指紋-,數字版權管理,廣告識別,視頻快速審核,視頻版權,視頻查重,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,無,無,視頻,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,菜品識別,視頻識別引擎,結腸息肉檢測,胃鏡評估系統,視頻標簽,場景識別,客流分析,手勢識別,視頻技術,短視頻標簽,視覺看點識別,動態封面圖自動生成,智能剪輯,新聞拆條,智能插幀,視頻技術,多模態媒資檢索公測中,媒體內容分析,媒體內容審核,視頻生成,視頻動作識別,

四、ocr文字識別

手寫識別,票據識別,通用文檔,通用卡證,保險智能理賠,財稅報銷電子化,證照電子化審批,票據類文字識別,行業類文字識別,證件類文字識別,通用類文字識別,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,增值稅發票核驗,營業執照核驗,智能掃碼,行業文檔識別, 汽車 相關識別,票據單據識別,卡證文字識別,通用文字識別,手寫文字識別,印刷文字識別,銀行卡識別,名片識別,身份證識別intsig,營業執照識別intsig,增值稅發票識別intsig,拍照速算識別,公式識別,指尖文字識別,駕駛證識別JD,行駛證識別JD,車牌識別JD,身份證識別,增值稅發票識別,營業執照識別,火車票識別,計程車發票識別,印刷文字識別(多語種),印刷文字識別(多語種)intsig內容審核,色情內容過濾,政治人物檢查,暴恐敏感信息過濾,廣告過濾,OCR自定義模板使用手冊,OCR自定義模板API文檔,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,身份證識別,駕駛證識別,行駛證識別,銀行卡識別,通用文字識別,自定義模板文字識別,文字識別引擎,身份證識別,圖片文字識別,通用文字識別,身份證識別,名片識別,光學字元識別服務,通用文字識別,手寫體文字識別,表格識別,整題識別(含公式),購物小票識別,身份證識別,名片識別,自定義模板文字識別,文字識別,通用文字識別,銀行卡識別,身份證識別,字幕識別,網路圖片識別, 游戲 直播關鍵字識別,新聞標題識別,OCR文字識別,通用場景文字識別,卡證文字識別,財務票據文字識別,醫療票據文字識別, 汽車 場景文字識別,教育場景文字識別,其他場景文字識別,iOCR自定義模板文字識別,通用類OCR,通用文本識別(中英)通用文本識別(多語言)通用表格識別,證照類OCR,身份證社保卡戶口本護照名片銀行卡結婚證離婚證房產證不動產證,車輛相關OCR,行駛證駕駛證車輛合格證車輛登記證,公司商鋪類OCR,商戶小票稅務登記證開戶許可證營業執照組織機構代碼證,票據類OCR,增值稅發票增值稅卷票火車票飛機行程單計程車發票購車發票智能技術,票據機器人證照機器人文本配置機器人表格配置機器人框選配置機器人,文字識別,行駛證識別,駕駛證識別,表單識別器,通用文本,財務票據識別,機構文檔識別,個人證件識別,車輛相關識別,通用表格,印章識別,財報識別,合同比對,識別文字識別,簽名比對,OCR識別,教育OCR,印刷識別,手寫識別,表格識別,公式識別,試卷拆錄

五、自然語言NPL

文本相似度,文本摘要,文本糾錯,中心詞提取,文本信息抽取,智能文本分類,命名實體,詞性標注,多語言分詞,NLP基礎服務,地址標准化,商品評價解析智能簡訊解析,機器閱讀理解,金融研報信息識別,法律案件抽取,行業問答推理,行業知識圖譜構建,文本實體關系抽取,搜索推薦,知識問答,短文本相似度,文本實體抽取, 情感 傾向分析,興趣畫像匹配,文本分類-多標簽,文本分類-單標簽,定製自然語言處理,語言生成,語言理解,自然語言處理基礎,文本摘要,數據轉文字,文本生成,智能問答系統,內容推薦,評價分析,文本分類,對話理解,意圖理解, 情感 分析,觀點抽取,中文分詞,短文本相似度,關鍵詞提取,詞向量,命名實體,識別依存,句法分析, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取,詞法分析, 情感 分析,關鍵詞提取,用戶評論分析,資訊熱點挖掘,AIUI人機交互,文本糾錯,詞法分析,依存句法分析,語義角色標注,語義依存分析(依存樹),語義依存分析(依存圖), 情感 分析,關鍵詞提取,NLP能力生產平台,NLP基礎技術,中文詞法分析-LAC,詞向量—Word2vec,語言模型—Language_model,NLP核心技術, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,信息檢索、新聞推薦、智能客服, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,機器問答、自然語言推斷、 情感 分析和文檔排序,NLP系統應用,問答系統對話系統智能客服,用戶消費習慣理解熱點話題分析輿情監控,自然語言處理,文本分類使用手冊,文本分類API文檔, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取智能創作,智能寫作,搭配短文,種草標題,賣點標題,社交電商營銷文案,自然語言處理能力,基礎文本分析,分詞、詞性分析技術,詞向量表示,依存句法分析,DNN語言模型,語義解析技術,意圖成分識別, 情感 分析,對話情緒識別,文本相似度檢測,文本解析和抽取技術,智能信息抽取,閱讀理解,智能標簽,NLG,自動摘要,自動寫文章,語言處理基礎技術,文本審核, 情感 分析,機器翻譯,智能聊天,自然語言,基於標題的視頻標簽,台詞看點識別,意圖識別,詞法分析,相關詞,輿情分析,流量預測,標簽技術,自然語言處理,語義對話,自然語言處理,車型信息提取,關鍵詞提取,語義理解,語義相似度,意圖解析,中文詞向量,表示依存,句法分析,上下文理解,詞法分析,意圖分析,情緒計算,視覺 情感 ,語音 情感 , 情感 分析,沉浸式閱讀器,語言理解,文本分析,自然語言處理,在線語音識別,自然語言理解火速上線中, 情感 判別,語義角色標注,依存句法分析,詞性標注,實體識別,中文分詞,分詞,

6、知識圖譜

知識圖譜,葯學知識圖譜,智能分診,騰訊知識圖譜,無,葯學知識圖譜,智能分診,知識理解,知識圖譜Schema,圖資料庫BGraph,知識圖譜,語言與知識,語言處理基礎技術,語言處理應用技術,知識理解,文本審核,智能對話定製平台,智能文檔分析平台,智能創作平台,知識圖譜,實體鏈接,意圖圖譜,識別實體,邏輯推理,知識挖掘,知識卡片

7、對話問答機器人

智能問答機器人,智能語音助手,智能對話質檢,智能話務機器人,無,電話機器人,NeuHub助力京東智能客服升級,騰訊雲小微,智能硬體AI語音助手,對話機器人,無,問答系統對話系統智能客服,Replika對話技術,客服機器人,智能問答,智能場景,個性化回復,多輪交互,情緒識別,智能客服,金融虛擬客服,電話質檢,AI語音交互機器人,中移雲客服·智能AI外呼,人機對話精準語義分析

8、翻譯

協同翻譯工具平台,電商內容多語言工具,文檔翻譯,專業版翻譯引擎,通用版翻譯引擎,無,機器翻譯,無,機器翻譯,音視頻字幕平台,機器翻譯,機器翻譯niutrans,文本翻譯,語音翻譯,拍照翻譯,機器翻譯,機器翻譯,文本翻譯,語音翻譯,通用翻譯,自然語言翻譯服務,文本翻譯,圖片翻譯,語音翻譯,實時語音翻譯,文檔翻譯(開發版,機器翻譯,文本翻譯,語音翻譯,拍照翻譯,機器翻譯實時長語音轉寫,錄音文件長語音轉寫,翻譯工具,機器翻譯火速上線中

9、聲音

便攜智能語音一體機,語音合成聲音定製,語音合成,一句話識別,實時語音識別錄音文件識別,客服電話,語音錄入,語音指令,語音對話,語音識別,科學研究,安防監控,聲音分類,語音合成,語音識別,實時語音轉寫,定製語音合成,定製語音識別,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,語音識別,語音合成,聲紋識別,語音識別,語音聽寫,語音轉寫,實時語音轉寫,語音喚醒,離線命令詞識別,離線語音聽寫,語音合成,在線語音合成,離線語音合成,語音分析,語音評測,性別年齡識別,聲紋識別,歌曲識別,A.I.客服平台能力中間件,語音識別,語音交互技術,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,遠場語音識別,語音識別,一句話識別,實時語音識別,錄音文件識別,語音合成,實時語音識別,長語音識別,語音識別,語音合成,波束形成,聲源定位,去混響,降噪,回聲消除,分布式拾音,語音識別,語音喚醒,語音合成,聲紋識別,智能語音服務,語音合成,短語音識別,實時語音識別,語音理解與交互,離線喚醒詞識別,語音識別,一句話識別,實時語音識別,錄音文件識別,電話語音識別,語音喚醒,離線語音識別,離線命令詞識別,遠場語音識別,語音合成,通用語音合成,個性化語音合成,語音技術,短語音識別,實時語音識別,音頻文件轉寫,在線語音合成,離線語音合成,語音自訓練平台,語音交互,語音合成,語音識別,一句話識別,實時短語音識別,語音合成,語音喚醒,本地語音合成,語音翻譯,語音轉文本,短語音聽寫,長語音轉寫,實時語音轉寫,語音內容審核,會議超極本,語音交互技術,語音識別,語義理解,語音合成,音頻轉寫,音視頻類產品,語音通知/驗證碼,訂單小號,撥打驗證,點擊撥號,數據語音,統一認證,語音會議,企業視頻彩鈴,語音識別,語音文件轉錄,實時語音識別,一句話語音識別,語音合成,通用語音合成,個性化語音合成,語音評測,通用語音評測,中英文造句評測,在線語音識別,語音識別,語音喚醒,語音合成,語音合成,語音識別,語音聽寫,語音轉寫,短語音轉寫(同步),語音識別,語音 情感 識別

十、數據挖掘AI硬體

演算法類型:包括二分類、多分類和回歸,精準營銷,表格數據預測,銷量預測,交通流量預測,時序預測,大數據,無,機器學習使用手冊,機器學習API文檔,大數據處理,大數據傳輸,數據工廠,大數據分析,數據倉庫,數據採集與標注,數據採集服務,數據標注服務,AI開發平台,全功能AI開發平台BML,零門檻AI開發平台EasyDL,AI硬體與平台,GPU雲伺服器,機器人平台,度目視頻分析盒子,度目AI鏡頭模組,度目人臉應用套件,度目人臉抓拍機,人臉識別攝像機,昆侖AI加速卡,智能預測,購車指數,數據科學虛擬機,平台效率,雲與AI,抗DDoS,天盾,網站漏洞掃描,網頁防篡改,入侵檢測防護,彈性雲伺服器,對象存儲服務,雲專線(CDA,AI計算機平台—360net深度學習基礎模型,AI演算法訓練適配主流AI框架

十一、其他

內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測,商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,強化學習,智能地圖引擎,內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,個性化與推薦系統,推薦系統,輿情分析,輿情標簽,智慧教育,智能語音評測,拍照搜題,題目識別切分,整頁拍搜批改,作文批改,學業大數據平台,文檔校審系統,會議同傳系統,文檔翻譯系統,視頻翻譯系統,教育學習,口語評測,朗讀聽書,增強現實,3D肢體關鍵點SDK,美顏濾鏡SDK,短視頻SDK,基礎服務,私有雲部署,多模態交互,多模態 情感 分析,多模態意圖解析,多模態融合,多模態語義,內容審查器,Microsoft基因組學,醫學人工智慧開放平台,數據查驗介面,身份驗證(公安簡項),銀行卡驗證,發票查驗,設備接入服務Web/H5直播消息設備託管異常巡檢電話提醒,音視頻,視頻監控服務雲廣播服務雲存儲雲錄制,司乘體驗,智能地圖引擎,消息類產品,視頻簡訊,簡訊通知/驗證碼,企業掛機彩信,來去電身份提示,企業固話彩印,模板閃信,異網簡訊,內容生產,試卷拆錄解決方案,教學管理,教學質量評估解決方案,教學異常行為監測,授課質量分析解決方案,路況識別,人車檢測,視覺SLAM,高精地圖,免費SDK,智能診後隨訪管理,用葯管家,智能預問診,智能導診,智能自診,智能問葯,智能問答,裁判文書近義詞計算,法條推薦,案由預測,

『玖』 【硬核技術文】研發績效,AI演算法的完美舞台

作者 | 胡豫隴

清華大學博士後

方雲智能團隊核心成員,AI演算法應用專家

方雲創始團隊具有深厚技術研發和企業管理經驗,依託長期行業積累和對數字化產業的深刻理解,以數字化方式評價研發團隊,驅動企業精確度量研發組織及個人的工作效能,合理調配研發資源。幫助技術決策者精確測評研發組織績效(便於向上匯報、平級溝通)和個人績效(便於向下管理)。回顧2020年度,我們在數據分析方面,基於實際用戶數據做了大量嘗試,取得了顯著成效,並將研究成果轉化為實際應用,深度提升了產品能力。

(一)演算法研究過程

演算法研究的基礎是數據,無論是基於數學和經驗知識的建模分析,還是基於統計學和機器學習的數據分析,都需要依託數據來開展。

演算法研究的第一步 ,我們建 立了自主的數據指標體系,並在這個指標體系基礎上,開展後續的研究。 指標體系由三級指標組成,一級為最基礎元數據,二級指標由一級指標計算得到、三級指標由二級指標和一級指標計算得到。一般來說,高級指標具有更高的信息密度,在進行信息表徵時,也能夠實現更加深度的信息傳達效果。但另一方面,數據分析時並不是選擇的高級指標越多,越有效果。而是要根據具體場景和演算法要求,選擇必要的各級指標,才能達到所需的分析效果。例如在kmeans演算法中,低級別指標反而具有更好的分類效果,而在SVM演算法中,則需要高級別指標。

研究的第二步,Kmeans。 我們鑒於元數據收集較為完整,同時數據量不是很大的情況,結合sklearn的演算法選擇引導圖,選擇了Kmeans演算法對員工的行為數據進行無監督學習聚類。

在選擇了若干基礎指標數據的同時,我們引入RFM思想,將員工在指定周期內的工作新鮮度(R)、工作頻次(F)和工作量(M)也作為聚類指標,一並用於演算法聚類,取得了十分明顯的分類效果。這里的核心在於我們不僅通過基礎指標評價了員工的工作結果數據,還通過RFM方法評價了員工的工作過程數據。將這兩類數據相結合做出的聚類,能夠很好的對員工進行分類表徵。分類結果的解讀可以直接根據指標的含義進行解釋。

研究第三步,SVM。 在聚類取得了較好的效果的基礎上,我們認為數據質量是可靠的,這相當於我們有了很好的客觀數據集,在此基礎上,我們提出由企業管理者對員工的表現進行打分,形成Label,這樣我們就得到了監督學習的訓練集,從而可以對員工行為進行監督學習下的預測。這項工作我們進行了多種嘗試,並最終通過特徵工程,選取了最為有效的15個指標,來作為員工行為的表徵指標。

這里我們回顧一下研究的歷程,以作為以後研究的經驗參考。SVM最初分析時,我們選擇了多於60個指標進行監督學習,但是學習效果並不好,類別間的區分度很低,這主要是由於過多的指標導致SVM演算法無法清楚地尋找到類別間的界線。所以我們通過一些特徵工程的方法,來進行降維。首先通過pearson相關度分析,我們將大量的指標根據關聯度,分為了24類,每一類中的指標都具有高度的相關性。因此可以在每一類指標中選出一個最具代表性的指標。這個選取過程由我們研究團隊根據實際情況,選擇了最具代表性的24個指標。其次,24個指標做SVM依然過多,我們用RFE演算法來判斷哪些指標對學習准確率影響最大,從而來選出最有效的那些指標。RFE過程中,我們使用Lasso、Ridge、Logistic、RFClassifier、linerSVM這5種演算法來作為篩選器,分別得到每一種演算法下最有效的特徵,進而,我們選取那些被更多演算法視為「有效」的特徵,例如任務平均完成時長,在5種篩選器種都被認為有效,那麼這個特徵對於我們做監督學習,就是一個很好的特徵。

此外,特徵篩選還應考慮一個問題,那就是篩選器和分類器是否要具有相同的演算法範式。例如,如果分類准備用SVM,那麼篩選器就業要選SVM類的。這樣才能保證篩選出來的特徵,在對應的分類演算法下是最為有效的。

研究第四步,數據分布擬合。 雖然在前三步研究中我們取得了一定的成效,但通過仔細檢驗已有的數據我們發現數據仍然存在兩方面問題,一是一些數據還是會存在漏填、錯填的問題,這屬於數據錯誤問題。二是在填報比較完整的數據中,存在一些極值數據,這些數據並不一定是錯誤數據,也有可能是個別員工行為表現異常導致。無論是哪種情況導致的數據異常(前提是已經預處理過缺失值),我們都可以通過擬合數據的分布,來判斷數據的分布情況,並尋找那些離群點。

在數據分布擬合研究中,我們通過對多種分布函數的嘗試,最終提出可通過正態分布、F分布、卡方分布、Gamma分布這四種常見的分布函數來擬合員工行為數據。以正態分布為例,如果我們擬合某個指標符合正態分布,那麼我們可以認為左右兩側5%區間以內的數據是常規行為,而兩側5%以外的數據是異常行為。並且通過進一步分析我們發現,一側5%到千分之一之間的數據,有時也屬於合理行為,而一側千分之一以外的數據,才最有可能稱為異常行為。通過這樣的分析,我們就可以通過數據分布擬合的方式,來發現員工的異常行為數據,並提出對應的管理策略。

此外,我們還曾提出在擬合時,要擬合顯著才能認為數據符合某一分布。但如果這樣判斷,我們發現有的數據並不滿足顯著的要求,但是數據確本身具有很強的實用信息,因此我們提出,不必以顯著為分析前提。而這其實也表明,數字化時代,要以更加符合實際的分析手段來分析數據,指導業務。而不用拘泥於過於學術或刻板的分析標准。

總結而言,在這四條主線研究思路下,我們對合作客戶的員工行為數據開展了特徵工程、非監督學習、監督學習、數據分布擬合等一系列標準的演算法研究。進而,結合實際應用場景,將研究結果轉化為了具體應用。接下來總結一下所形成的具體應用。

(二)產品轉化結果

研究成果向產品轉化,是一個不斷積累,由量變引起質變的過程。在最初的研究中,我們會在多個點上開展研究,但最終哪些研究成果能轉變為實際應用,是不確定的。而隨著研究的增多,能夠轉變為實際產品功能的成果就會顯現,這體現在三個層次。第一層次,一些好的研究點,一些對特定場景的解決方案,能夠轉變為實際產品功能。第二層次,單個功能點看似沒有太大價值,但是當出現某個典型功能點後,我們會意識到,其他看似無用的功能點,卻是對這個典型功能點的有效補充。第三層次,多個研究會呈現出一些共性,這些共性能夠轉化為產品思路和產品模式,這是要比單點產品功能更具價值的地方。這樣的由研究向產品轉化的思路,紮根實踐,又提煉總結,是具有很好的參考意義的。

我們在多個研究點探索後,不斷思考如何將研究點轉化為實用的功能,這既要結合客戶需求,也要結合我們自己對用戶痛點、產品功能的設計。2020年度的研究,我們始終在做的主線是員工行為畫像,無論是監督學習還是非監督學習,都是為了選定一套合適的指標和權重,來達成對員工的排名。在這個思路下,我們整合多種排名演算法,最終提出:由用戶自主選擇排名模式。在不同的排名模式下,我們為用戶提供不同的演算法或排名方式,這就相當於我們以後端智能化的方式,滿足了用戶在前端多樣化的需求。而這也正是數字化時代,產品以智能化方式,為用戶提供個性化功能的體現。具體而言,我們為用戶提供四種可選模式,來實現對員工排名。

模式一、行業最佳實踐 ,以成熟用戶已有案例,制定一套指標和相應權重。用戶選取想要的案例類別,我們根據其實際數據,計算相應排名結果。這里打分模式有兩種,一是產品自定義給出,二是根據已有打分排名,用Kmeans確認不同類別優秀度,回歸樹反推指標權重。

模式二:AI聚類演算法 ,系統對員工進行自然狀態進行三次或多次kmeans聚類,每次調整指標種類和權重,然後由客戶選擇一種符合預期的聚類結果,那麼客戶的選擇就對應了指標種類和權重。

模式三:AI監督學習 ,對員工進行kmeans聚類,得到n個類別,客戶對n類按優秀度進行排序打分,接下來,系統依據打分情況,通過RFE演算法(Estimator選用決策樹回歸或決策樹分類),判斷不同指標重要度。

模式四:AI輔助定製(純手動) ,由用戶指定n個指標,並為n個指標確定權重,系統對員工進行排名,可選擇演算法有:加權求和、RandomForestRegressor、GradientBoostingRegressor。備注,後兩種具體實現方式是,根據加權求和打分得到y,x就是輸入的加權指標。然後訓練得到模型。

方雲智能多種AI績效評價方法均已通過實踐驗證,並實現產品化。

(三)   演算法准確率分析

數據分析時結果一般需要有一定的准確度,才可以說演算法對問題實現了一定解決。在數字化轉型的過程中,我們不必以絕對的預測准確率來判斷演算法好壞。這是由於我們在評價員工行為時,訓練集標注或者人的認知,都是極具主觀性的,而且這種主觀性又是會動態變化的,所以演算法能夠捕捉到的,有時候也許是客觀規律,但有時候也許就只是管理者的一時情緒。我們評價演算法的好壞,應該從實踐出發,對於符合認知、規律的演算法是好演算法,但是能解釋或捕捉短期用戶態度的演算法,也是可靠的。具體而言,我們針對已有的研究,給出下述准確率總結。

一、Kmeans是非監督學習,無准確率,但可以闡述我們對老黃牛和南郭先生的發現,是符合管理常識的。

SVM預測,我們首先得到了一個關鍵結論,管理嚴格程度高、中、低,對應員工表現中、高、低。這一結論的得出是符合常識規律的,那麼我們也可以反推認為演算法是有效的。

二、根據對過去員工數據+label進行SVM訓練,我們預測未來的准確率最初僅為60%,但經過樣本篩選,參數調優後,准確率可達到93%。

三、數據合理性分析中,我們通過以不同的分布擬合員工行為數據,選出95%區間內的員工,再進一步選出95%到0.001之間的員工,准確選出數據出現問題的員工。具體實踐結果表明,我們確實捕捉到了行為極值點,也捕捉到了5%以外但行為合理的點。

(四)研究總結和下一步計劃

演算法研究、數據分析的目的,最終還是為了找到新的用戶需求,開發新的產品功能。第二部分中我們總結了由研究向產品實際功能轉化的思路。一是好的研究點直接轉變為實際產品功能。二是一些低價值的功能點支撐典型功能點後。三是研究體現出的共性思路,轉化為產品思路和產品模式。

接下來我們的研究也致力於從這三個方面來探索更多的產品功能和產品模式。目前提的主思路有:

一是將項目管理的知識和流程植入產品,幫助企業管理者簡單、高效的完成項目管理。這其中將人員動態分配到不同的任務中,就會是十分典型的一個功能。在此基礎上,員工行為的分析和排名就會成為很好的輔助功能,我們可以依據員工行為特點,將他們分配到不同情況的任務中。

二是深化單點功能。我們在SVM訓練模型時發現,每個月的模型放到下個月或者其他月份來預測,准確率不穩定。其中很可能的原因是每個月的評價標准有所波動。那我們就可以在長期數據上,對每個月都進行模型訓練,得到多個模型。在此基礎上,將未來一個月的數據放在過去多個月的模型上預測,這樣就會出現一個月的數據在多個月模型下評價各不相同的情況,這就能反應出每個月評價標準的波動情況。

三是產品模式的升級。我們可以採用輕量化前端,收集一些簡單必要的數據後,將復雜的分析都放在後端來實現。功能上的呈現就是,用戶在前端進行一些個性化的數據和模式選擇,系統能夠在後端為用戶進行多樣化的分析,呈現給用戶智能化的操作界面(如智能化流程、模板化流程)、分析結果(排名、雷達圖、行為空間映射等),甚至是客制化流程、數據,演算法,系統提供分析結果。

免費試用地址: FarCloud|方雲|方雲數據智能研發績效|30天提效30%

『拾』 論內容理解演算法

經過幾年的膨脹期,演算法的熱度快速下降,不論是AI四小龍的上市之路艱辛,還是各大頭部互聯網公司的副總裁重返學術界,以及演算法人員的招聘凍結。這里有總體經濟形勢惡化帶來的影響,也與演算法本身的能力上限有關,在各類學習任務上,演算法的性能正在逐漸進入瓶頸,通用任務效果提升的梯度在逐漸變小,有效的進展都依賴於超大規模的數據和模型參數,以通用語義表徵任務為例,完成一次超大規模的預訓練模型的成本達到數百萬元,極大地限制了中小企業參與的機會。

在業務應用方面,經過幾年的持續建設和多種類型功能的輸出,業務依賴的不同方向所對應的內容理解演算法在應用和效果層面已趨成熟,能夠帶來驚喜效果的機會變的很少。這種形勢下,作為偏後台支持的角色,如何去識別並持續深化內容理解演算法的作用變得很重要。本文試圖從價值視角分析內容理解的生存形勢,發掘未來發展的可能性以及從業人員的應對手段方面做了些不算嚴謹的闡述。

一直以來我們定義內容理解演算法為業務的萬金油,隨時隨地可以插拔式應用。從配合內容生產者做創作提示,幫助運營做質量分析,版權保護,相似查找,幫助搜索演算法提供長尾查詢的效率增強,幫助推薦演算法提供標簽等細粒度語義特徵,根據消費者的負向反饋進行同類型的內容屏蔽(如軟色情,惡心,不喜歡的明星)。因此很自然地,我們把內容理解演算法的使命定義為「內容流轉的全鏈路提質提效」,這里的質量包含對確定性劣質的去除,以及優質內容的免審或者高曝推薦。效率指的是把內容從生產到消費的鏈路上的時間優化到最快,包括配合運營進行快速的內容篩選,輔助分發演算法進行人群和內容的精準匹配。

這里需要回答的是,在上述相對完備的能力基礎上,內容理解演算法所能提供的最核心的價值是什麼?

首先是客戶的定義問題,內容理解演算法的客戶不是運營,不是分發演算法,也不是生產者和消費者。而是要回歸到最原始的「內容」,用於對內容進行附加值的極大化提升。

其次,參與到內容流轉各環節的角色承擔了對內容理解演算法的價值落地和放大,不論是運營所主導的平台意志實現,分發演算法對內容和消費者的高效匹配,以及生產者和消費者分別從內容供給和消費方面對內容理解演算法的訴求。

最後,內容本身是一種載體,載體背後是人對現實世界的刻畫,平台層面有對內容進行按需取用的邏輯,消費者也有用腳投票的權利,這里的內容理解演算法不應當做任何的自我傾向,按照業務訴求的多樣化能力輸出是內容理解存在的核心價值,否則通過簡單搬運學術界的開源模型便可形成表面上的業務能力堆砌,顯然是無法滿足業務的增長訴求。

因此,我們可以形成價值定義: 「內容理解演算法的核心價值是內容全生命周期內,根據服務業務的多樣化訴求,提供智能化和結構化的理解能力,其衡量標准為上述能力帶來的附加效率提升和成本下降。」

從這個定義來看,內容理解演算法似乎沒有站在主戰線上,價值被隱性地統計起來。實則不然,就如戰爭一樣,沖鋒在前的部隊只有少數,而承擔防守和輔助任務的兵種實際上是不可或缺的,很多時候也決定了戰爭的走向, 歷史 上由於後勤保障問題導致戰爭走向改變的例子比比皆是。就如定義中的效率提升,它其實不是一票式的,由於效率的提升會帶來供給者和消費者的規模增大,又會產出對內容理解演算法效率提升的更多訴求,這種正反饋式的鏈路也是內容業務可以快速實現既定目標的重要方式。

一、估值 游戲

以2021年11月小紅書的估值來看,彼時6千萬DAU和47分鍾人均時長的內容社區獲得200億美金的估值認可,這屬於一個早期內容社區經歷過較長時間的成長後才能達到的高度。考慮一個相對創新內容業務,兩到三年的時間想要達到5000萬DAU和5分鍾的人均時長其實還是比較困難的,按照對標小紅書的邏輯,估值上限為30億美金,假設內容理解演算法對業務貢獻率用3%折算,估算下來內容理解估值為9千萬美金,按照簡單的市銷率10倍計算,內容理解每年的營收為900萬美金(按照估值反推營收的原因是是內容理解演算法對業務的點狀式能力輸出難以做到精準的量化統計)。

900萬美金是非常尷尬的數字,因為內容理解演算法存在比較高昂的成本,從大頭上來看,內容理解演算法支出分為三部分,第一部分是演算法人員,以15人的支撐團隊計算(看起來有點多,實則不然,想要支撐對未來預期的增長,15個人實際並不夠用),按照單人每年的支付成本150萬計算(這個成本折算到員工回報大約為100萬左右,已經沒多大市場競爭力),大約400萬美金/年;第二部分是資源消耗,按照百萬內容/天的規模計算,各種資源成本(包括機器,存儲、輔助軟體等)大約500萬美金/年;第三部分是配套工程人員,產品經理,外包標注支持等,這部分大約150萬美金/年。可以看到業務發展到這個階段,內容理解演算法是入不敷出的。

按照上述口徑,能夠改善內容理解價值的核心方法包括三個方向,一是業務估值的上升,需要業務DAU和時長的穩定提升。二是內容理解演算法的業務貢獻率提升,這里對內容理解演算法的要求是比較高的,不僅僅要從內容的質量,生產者的輔助,分發流量效率,業務的大盤生態,或者業務商業化上有所作為。三是降低成本,這個路徑的可行性很弱,反倒是隨著業務的成長,成本的消耗會進一步增加,能夠做的是控製成本增長的速度小於業務增長。

「按照業務貢獻對處於業務發展前期的內容理解演算法進行價值衡量,情況是非常不樂觀的」。

二、價值重塑

前面的視角是業務閉環下的價值衡量,放開到更大的視角,內容理解演算法之所以構成相對獨立的功能單元是因為它提供的能力是相對通用的,比如標簽識別演算法不僅僅可用於小紅書,也可用於抖音和快手這樣的內容業務。

因此在支撐具體的業務的過程中沉澱出通用演算法進行其他類似業務的價值輸出,是內容理解演算法的另一扇門。這裡面臨的另一個問題是如果是頭部業務,一定是要求內容理解演算法是為它量身定製的,而中小業務願意為內容理解演算法買單的價錢是有限的。針對這個問題的核心解法是在做頭部業務能力定製的時候,提供盡可能通用的能力,通過對數量眾多的中小業務形成價值輸出,實現量級的堆砌。

此外,要差異化成熟業務和創新業務,對於成熟業務而言,內容理解演算法對業務的微小提升可能是非常明顯的,以京東平台為例,如果內容理解演算法通過圖像搜索或者同款識別等能力提升業務成交0.1%,也將是數億美金每年的價值加成。對於創新業務而言,內容理解演算法應當深入業務,從內容的全生命周期為業務提供硬核的能力,用以幫助業務實現生產者和消費者體感的明顯提升,最終帶來業務的正反饋式增長,早期的抖音就是依託炫酷的AI特效體系實現用戶規模的快速增長。

「目前能看到的,讓內容理解演算法進行價值放大的有效途徑是貼身服務頭部業務的過程中,沉澱通用化能力橫向輸出盡可能多的同類型業務。針對成熟業務尋找對業務增長的確定性增長點,創新業務尋找到適合於業務快速增長的硬核能力」。

作為一名內容理解演算法沉浮六年的老兵,我對內容理解演算法的未來持謹慎樂觀的態度。原因有三個方面,一是這一輪深度學習帶來的演算法提升空間變得有限;二是互聯網用戶進入存量時代後,頭部內容會更加精耕細作,從追求效率轉向運營的精細化和粘性保持;三是對未來可能出現的下一代內容消費方式的期待和觀望。

一、相對有限的演算法提升空間

過去的幾年,內容理解演算法的演進可以分為三個方向,一次是從傳統的手工特徵到神經網路特徵的升級,通過大數據和大算力實現效果的明顯提升,也極大降低了演算法人員的准入門檻;二是對內容的理解從單一模態升級為多模態&跨模態,以及以圖神經網路為基礎的推理能力;三是極大規模數據的模型學習,即以大規模預訓練模型為基礎的統一內容表徵方式,催生了transformer家族的不斷壯大。

然則,演算法的性能逐漸接近瓶頸,不論是在看圖說話、 情感 分析、還是標簽識別等演算法任務上距離人類仍然存在一定的距離,並且這份距離看起來短期內沒有明確的突破機會。反倒是業界開始從監督學習往無監督學習靠近,試圖利用海量數據學到背後的範式,這本質上是對追趕上人類能力的背離。

以transformer為例,百億數據下訓練一次消耗數百塊GPU,數周的訓練時間才有可能獲得明顯的效果的提升,這還不包括精細的網路調整的令人沮喪時間成本。此外下游任務想要得到期待的效果,還需要進一步的遷移學習。從表象來看,只是提供一個更好的演算法學習的起點。

我們經歷了一個業務對我們翹首以待到逐漸理性的合作過程,AI演算法從來就無法成為救世主,而是有更強生產力的工具。當然我們不應當過於悲觀,起碼過往的幾年,蓬勃發展的演算法體系帶來了從業人員的准入門檻極大下降,大眾對AI演算法的廣泛認知也有助於內容理解演算法相對長期的旺盛生命力和成長。

二、存量用戶時代的內容社區的運營方式

中國互聯網用於見頂,意味著各大內容業務必須進入存量用戶階段。存量用戶階段面臨的困境是粗放式增長不復出現,用戶群體開始細分,用戶粘性變得更加艱辛,要求內容社區必須進行精細化運營。精細化運營背後的表現為對效率的要求下降,轉而對用戶心智和長期的戰術保持耐心。這種情況下內容理解演算法會成為散落到業務眾多需求列表的功能支撐點,獨當一面的機會愈發減少。

「從演算法學習的角度來看,人的創意,玩法設計,互動屬性是目標(ground truth)的天花板,因此此時此刻保持工具屬性是相對合理的態度」。

三、下一代的內容消費方式

互聯網時代的內容消費經歷了文本到圖像的升級,再到視頻的升級,每一次內容消費升級背後產出對內容理解演算法的爆發式增長,那麼下一代的內容消費方式又是什麼呢?

業界目前正在押注元宇宙,facebook甚至把名字都改成了meta。過去有幾波VR/AR的熱潮,看起來除了在某些線上成人網站和線下 游戲 設備之外,並未有足夠顛覆我們日常生活方式的輸出。

人類對更高級的感知外部環境和與他人無時空差別的交互需求是明確存在的,只是它是否由「元宇宙」承載卻是個未知數。如果元宇宙是這個載體的話,那麼虛擬世界的感情識別,觸感生成,自然交互,生態的 健康 治理,超大規模內容消費下的負載下降會是內容理解演算法可以嘗試去攻克和深耕的全新地帶,也會承擔更為核心的角色。

「下一代的內容理解消費方式有機會成為內容理解的下一個主戰場,但是目前的形勢並不明朗,需要我們保持耐心地思考和觀望」。

四、其他的可能

拋開頭部綜合性AI大廠商如網路,騰訊,阿里巴巴,華為等企業作為內容理解多樣性需求輸出的第一極之外,還有以內容理解演算法作為平台能力輸出的第二極,比較有名的是AI四小龍(商湯、曠視、依圖,雲從),以及深度結合各民生領域的產業AI能力輸出。

醫療AI,解決醫療資源匱乏導致看病需求無法被滿足,人工看診時間長等問題。比較典型的case是COVID-Moonshot眾包協議,由500多名國際科學家共同參與,以加速COVID-19的抗病毒葯物研發。

教育AI,解決優質教育資源匱乏導致的分配不公,及教師和學生的信息不對稱問題,雖然國家正在推新教育雙減政策,但是教育作為一項基本的人身權利應當得到更好的滿足,比較知名的企業有松鼠AI,猿輔導等。

製造AI,解決製造車間設備、數量、功能增多、調度分配難度大、需求端個性化要求等問題,利用AI,自動化,IOT,邊緣計算,雲,5G等手段,充分利用生產車間的海量價值數據,把人從簡單重復的勞動中解放出來以從事更高級的任務,幫助提高產量的同時降低缺陷率,比較知名的企業有正在香港上市的創新奇智和創新型工業AI-PASS平台提供商遠舢智能等。

此外,還有在智能駕駛、智慧城市、晶元AI等產業領域深度耕耘的各種公司,他們正在充分發揮大數據和AI演算法的能力,為各大產業帶來源源不斷的創新能力。

回到內容理解演算法的現存生存環境,仍然存在一定的潛力可以挖掘。在下一代內容消費方式到來之前,可以做得更好,形成與上下游的積極聯動,在現在的舞台上展現出更佳的風采。

一、產品

內容理解演算法的產品是不是剛需,這個話題有點爭議,有人說演算法的產出速度是比較慢的,讓昂貴的產品角色參與建設本身會存在浪費的情況。我個人認為內容理解演算法所對應的產品角色必須具備,因為在龐大的業務體系後面,如果缺失了面向業務需求的自頂向下的內容理解演算法體系設計和建設,非常容易出現業務賦能的水土不服。

產品需要考慮的核心問題是如何衡量長期和短期投入,演算法是比較精細的工作,對結果的預期是非確定性的,因此需要做好對業務預期的管理以及同業務需求的及時交互。為了保障演算法最終在業務的使用效果,前期可以通過簡化版本或者半成品演算法的產品化方案進行快速試錯,幫助業務決策的同時給演算法的長期迭代爭取空間。此外,針對演算法長期迭代設計有效的樣本數據迴流機制,通過配置化輸出給到業務盡可能多的試錯方式,以及業務上線使用後的效果實時監控等都是產品需要思考的工作。

二、運營

運營應該是內容理解演算法打交道最頻繁的相關方,內容理解演算法的評價標准和業務適配都需要運營來進行構建和監控。內容理解演算法是運營進行內容供給生態和消費生態運營的智能助手,從內容結構化標簽角度提供到運營各種分析使用方式,如內容審核、內容圈選,內容人群定投等。

和運營打交道對內容理解演算法提出高要求,如何快速衡量需求的合理性及可行性非常關鍵。有時候內容理解演算法做了過度承諾,導致上線效果不佳,影響業務的發展。有時候對演算法實現效果的不自信或產品化用法借力不夠從而拒絕需求導致業務失去寶貴的試錯機會。因此內容理解演算法應當對內容運營的鏈路有相當的掌握,可以和運營一起定義全鏈路演算法能力,從應用的視角推進演算法需求的合理有序的開展。

三、生產者

生產者對於平台來說至關重要,巧婦難為無米之炊,不論運營和分發演算法多麼牛逼,缺少了高質量的內容生產來源,業務是不可能有持續增長的。通常情況下兩千優質生產者加上數萬的普通生產者即可支撐起千萬DAU的業務,如何服務好這部分生產者對平台來說非常關鍵。

內容理解演算法和生產者目前的主要交互方式包括幾個方面,一是在內容生產的時候給到生產者的內容元素的智能推薦,如話題,標題,配樂的推薦等;二是進行內容展現效果的提升,如濾鏡,貼紙,美顏,畫質增強等;三是從質量層面給予生產者指導和管控,包括從業務視角給到生產者發布的內容大致因為何種理由不被平台採納,內容高熱趨勢消費榜單,內容的版權保護等。

從生產者視角來看,盡可能多地從平台獲取流量或者商業化價值是根本追求,因此往往會出現對平台規則的不斷試探以攫取利益,如發布大量的擦邊球或危言聳聽的內容。內容理解演算法需要在內容供給規模不斷變大的情況下幫助平台保持 健康 的生態和有效的流量分配同時盡可能給到生產者更多指導。這種相愛相殺的關系也給內容理解演算法帶來了不少的挑戰和生存空間。

四、分發演算法和消費者

把分發演算法和消費者放在一起的核心邏輯是內容理解演算法絕大部分情況下是需要通過分發演算法和消費者打交道的。從消費者視角觀察,高活用戶代表主流心智,如何服務好這波群體關繫到業務的生存問題。中低活用戶是平台的增量所在,持續加強這部分用戶的平台粘性是關鍵任務(這里會有部分用戶的出逃,為了維護平台的心智,這部分的犧牲是可接受的)。分發演算法承擔了把海量內容做負載下降後根據用戶的長短期興趣進行推薦的使命,分發演算法是需要秉承平台意志的,用於進行內容的流量調配用於影響消費者的體感和心智,給平台帶來源源不斷的生機。

早期編輯為主的內容分發模式下,消費者是被教育的對象,一天之內能夠看到的新鮮內容是非常少的,這種情況導致消費者的瀏覽深度和時長是受限的。個性化推薦模式下,用戶的興趣被極致放大,由於相關內容和新鮮內容的快速推送,消費者會感受到強烈的沉浸式消費體感。然而內容的多樣性,消費體感的持續維護,興趣的拓展等變得非常重要,這給分發演算法的精準性提出很高要求。提供分發演算法細粒度的識別能力是內容理解演算法可以大展身手的機會,內容是否具備不錯的分發潛力以加大分發流量?內容的適合人群是什麼?用戶無序瀏覽背後的核心興趣是什麼?軟色情/部分人群不喜好內容(蛇蟲寵物)如何精準識別用以分發調控等問題都是分發演算法難以觸達的地方,這些命題正是內容理解演算法可以深入研究並影響內容分發和消費的重要方面。

除了特定的場景(如互動玩法,個性化封面圖等),內容理解演算法應當恪守自己在內容生命周期的參與廣度。涉及到內容的分發和消費,內容理解演算法應當把自己定義為分發演算法不可或缺的助力,而不是試圖去做替換,站在內容理解演算法視角,分發演算法可以約等於消費者。以飯館運作為例,分發演算法是大廚,根據消費者的口味和食材和菜譜提供個性化的食物服務。內容理解演算法可以對食材進行質量管控,研發新的菜譜,在必要的時候提供半成品的菜品。和消費者的交互交由分發演算法來處理,畢竟術業有專攻,內容理解演算法可以在對內容的深度理解和消費者洞察上做縱向的深入,提供更多的可能性,包括生態、多樣性、內容保量等。

內容理解演算法和分發演算法的理想態是正和 游戲 ,零和 游戲 對雙方都是沒有意義的,因此這里額外對內容理解演算法提出的要求是在內容消費場景建立一套相對客觀的評價體系,通過演算法的標准化評估進行上線流程的加速,通過不斷的快速試錯給分發演算法提供更多槍支彈葯。

五、工程&數據分析

一個好漢三個幫,內容理解演算法背後也站著一群小夥伴,面向演算法生產的大規模工程基礎設施和面向演算法洞察的數據分析能力可以幫助內容理解演算法更好的發展。在內容爆炸式增長的今天,高效的演算法工程體系非常關鍵,甚至是拉開不同公司差距的最重要手段之一。有個非常明顯的例子,在業界舉辦的各種演算法大賽上,只要是大型互聯網公司參賽基本上都會出現霸榜的情況,這背後是模型訓練效率的強大先發優勢,擁有百塊級別GPU並發訓練能力的高校是非常少的。此外以通用向量檢索功能為例,百億級的向量索引能力在有限的算力和內存消耗下穩定運行起來是需要大量的工程優化手段的,而這個功能對演算法的高效使用至關重要。

服務於內容理解演算法,數據分析有非常多的應用。根據消費統計行為構建面向內容興趣的用戶畫像,風向趨勢內容消費對供給的指導,層次耦合的內容標簽的合理掛靠關系,演算法上線前的有效性分析,及演算法上線後持續監控和異常告警等。

內容理解演算法需要做的是面向業務場進行完整的架構設計,從演算法的效率角度,包括演算法服務效率,演算法洞察視角等方面聯動工程&數據分析提供強大的生產力,通過規模和系統厚度構建足夠的技術門檻。

2021年對中國互聯網,甚至是中國 社會 的前行都是不同尋找的一年,在全球經濟下行,國家間人為壁壘構建的情況下,恰恰又遭遇了國內人口增長的停滯,國家對互聯網平台的強管控,以及互聯網用戶滲透的見頂。

內容理解演算法背後的AI演算法體系多少也收到了波折,不過從整體形勢來看,AI演算法體系和產業化仍然在往前走。基礎理論研發體系中對應的論文發表、會議舉辦及大賽的舉行和參賽人員的規模都在增長。這兩年的遇冷問題主要是受到市場大環境的影響,AI占總體投資的比重仍然在上升。從國內方面來看,全球經濟的技術封鎖進一步堅定了中國立足自主創新的決心和信心,國家十四五計劃也明確提出了大數據,人工智慧,VR/AR的產業發展規劃,AI產業仍然有很強的潛力值得挖掘。

作為依附於業務的內容理解演算法,需要有清晰的自我認知和定位。我們的核心價值是什麼?它如何得到有效的定義和量化?作為服務於業務眾多角色中的一員,如何做好同其他角色的正向互動?上述問題背後的答案代表了內容理解演算法的核心作用。現在的演算法界有一股投機風,什麼熱門就搞什麼,有號稱無需數據標注的無監督學習,有號稱可以效果對標大量標注樣本的小樣本學習,有號稱單個演算法模型打遍天下的多模態預訓練學習等等。如果從問題抽象簡化的角度去研究基礎的理論體系和演算法學習範式是沒有問題的,但是如果業務的算同學也把這類概念擺在嘴上是有問題的,脫離了業務場景的核心訴求去談技術創造新商業,是一種對客戶的傲慢,屬於典型的機械主義。

作為深度結合業務的內容理解演算法,應當從業務場景出發,結合演算法的可行性去 探索 用於業務賦能的核心技術,對於明確可以產生正向業務價值的演算法技術,哪怕需要較長一段時期的打磨,也要敢於投注建設,在演算法研發的過程中不斷地思索業務的更多可能性,逐漸把業務的不確定性轉化為技術的相對確定性。對於較長時間無法形成對業務貢獻的演算法,應當果斷放棄深入研究,當然作為技術觀望跟進是沒有問題的。

從目前形勢來看,內容理解演算法的發展確實碰到了一些困難,但我們可以保持對未來的謹慎樂觀,期待下一代內容消費形態的來臨,同時盡可能多地進行業務場景的細化進行能力輸出和加強,把存量業務價值做好放大,通過演算法自身的持續建設,為將來可能來臨的那一刻做好技術儲備。

閱讀全文

與江西ai演算法定製相關的資料

熱點內容
學習結束感言簡短程序員 瀏覽:396
android關機鬧鍾實現 瀏覽:964
滑鼠一鍵打開文件夾設置 瀏覽:161
程序員看過來我想靜靜搞笑視頻 瀏覽:370
curlphp爬蟲 瀏覽:874
python按日期循環 瀏覽:110
php三個等號 瀏覽:760
培訓班出來的程序員解決問題很差 瀏覽:963
程序員那麼可愛25集 瀏覽:753
伺服器地址和ip地址一樣不 瀏覽:664
php中括弧定義數組 瀏覽:602
php列印堆棧 瀏覽:516
華為adb命令行刷機 瀏覽:965
人像攝影pdf 瀏覽:761
解壓文件密碼怎樣重新設置手機 瀏覽:1001
高考指南pdf 瀏覽:695
爬蟲python數據存儲 瀏覽:240
u盤怎麼取消加密 瀏覽:431
567除以98的簡便演算法 瀏覽:342
pdf手機如何解壓 瀏覽:21