Ⅰ 圓周率怎麼算
圓周率是用圓的周長除以它的直徑計算出來的。「圓周率」即圓的周長與其直徑之間的比率。
1、圓周率是一個超越數,它不但是無理數,而且比無理數還要無理。無理數有一個特點,就是小數部分是無限的,而且是不循環的。比如0.9的循環小數,這個雖然無限,但是重復的。而圓周率則是無限,而且數字不會重復,因此圓周率看起來非常長的一串數字。
2、阿基米德是最早得出圓周率大約等於3.14的人。傳說在他臨死時被羅馬士兵逼到一個海灘,還在海灘上計算圓周率,並且對士兵說:「你先不要殺我,我不能給後世留下一個不完善的幾何問題。」阿基米德計算圓周率的方法是雙側逼近:使用圓的內接正多邊形和外切正多邊形的周長來近似圓的周長。正多邊形的邊數越多,多邊形周長就越接近圓的邊長。
3、以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年Lambert證明了圓周率是無理數,1882年Lindemann證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。現在的人計算圓周率,多數是為了驗證計算機的計算能力,還有,就是為了興趣。
Ⅱ 圓周率的前六百位是什麼
π = 3.14159,26535,89793,23846,26433,83279,50288,41971,69399,37510,58209,74944,59230,78164,06286,20899,86280,34825,34211,70679,82148,08651,32823,06647,09384,46095,50582,23172,53594,08128,48111,74502,8,70193,85211,05559,64462,29489,34930,38196,44288,10975,66593,34461,28475,64623,37867,83165,27120,19091,45648,56692,34603,48610,45432,66482,13393,60726,02491,41273,72458,70066,06315,58817,48815,20920,96282,92540,91715,36436,78925,90360,01133,05305,48820,46652,13841,46951,74151,16094,33057,27036,57595,91953,09218,61173,81932,61179,31051,18548,07446,23799,62749,56735,18857,52724,89122,79381,83011,94912,98336,73362,44065,66430,86021,39501,60924,48077,23074,36285,53096,62027,55693,97986,95022,24749,96206,07497,03041,23668。
Ⅲ 圓周率是怎麼計算的
【圓周率簡介】
[編輯本段]
圓周率是指平面上圓的周長與直徑之比。用希臘字母 π (讀"Pài")表示。中國古代有圓率、周率、周等名稱。(在一般計算時π人們都把π這無限不循環小數化成3.14)
【圓周率的歷史】
[編輯本段]
古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取π=(4/3)^4≈3.1604 。第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。
南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工程師安托尼斯的著作中,歐洲稱之為安托尼斯率。
阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。
德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,π值計算精度也迅速增加。1706年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下新的紀錄。至今,最新紀錄是小數點後12411億位。
除π的數值計算外,它的性質探討也吸引了眾多數學家。1761年瑞士數學家蘭伯特第一個證明π是無理數。1794年法國數學家勒讓德又證明了π2也是無理數。到1882年德國數學家林德曼首次證明了π是超越數,由此否定了困惑人們兩千多年的「化圓為方」尺規作圖問題。還有人對π的特徵及與其它數字的聯系進行研究。如1929年蘇聯數學家格爾豐德證明了eπ 是超越數等等。
【圓周率的計算】
[編輯本段]
古今中外,許多人致力於圓周率的研究與計算。為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神秘的數貢獻了無數的時間與心血。
十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新。整個十九世紀,可以說是圓周率的手工計算量最大的世紀。
進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進。藉助於超級計算機,人們已經得到了圓周率的2061億位精度。
歷史上最馬拉松式的計算,其一是德國的Ludolph Van Ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於1609年得到了圓周率的35位精度值,以至於圓周率在德國被稱為Ludolph數;其二是英國的威廉·山克斯,他耗費了15年的光陰,在1874年算出了圓周率的小數點後707位。可惜,後人發現,他從第528位開始就算錯了。
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用魯道夫算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
現在的人計算圓周率, 多數是為了驗證計算機的計算能力,還有,就是為了興趣。
【圓周率的計算方法】
[編輯本段]
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。
1、馬青公式
π=16arctan1/5-4arctan1/239
這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。
2、拉馬努金公式
1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。
1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是:
3、AGM(Arithmetic-Geometric Mean)演算法
高斯-勒讓德公式:
這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。
4、波爾文四次迭代式:
這個公式由喬納森·波爾文和彼得·波爾文於1985年發表,它四次收斂於圓周率。
5、ley-borwein-plouffe演算法
這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。
6、丘德諾夫斯基公式
這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本:
【圓周率的計算歷史】
[編輯本段]
時間 紀錄創造者 小數點後位數 所用方法
前2000 古埃及人 0
前1200 中國 0
前500 《聖經》 0(周三徑一)
前250 阿基米德 3
263 劉徽 5 古典割圓術
480 祖沖之 7
1429 Al-Kashi 14
1593 Romanus 15
1596 魯道夫 20 古典割圓術
1609 魯道夫 35
1699 夏普 71 夏普無窮級數
1706 馬青 100 馬青公式
1719 (法)德·拉尼 127(112位正確)夏普無窮級數
1794(奧地利)喬治·威加 140 歐拉公式
1824 (英)威廉·盧瑟福 208(152位正確)勒讓德公式
1844 Strassnitzky & Dase 200
1847 Clausen 248
1853 Lehmann 261
1853 Rutherford 440
1874 威廉·山克斯 707(527位正確)
20世紀後
年 月 紀錄創造者 所用機器 小數點後位數
1946 (英)弗格森 620
1947 1 (英)弗格森 710
1947 9 Ferguson & Wrench 808
1949 Smith & Wrench 1,120
1949 Reitwiesner et al ENIAC 2,037
1954 Nicholson & Jeenel NORC 3,092
1957 Felton Pegasus 7,480
1958 1 Genuys IBM704 10,000
1958 5 Felton Pegasus 10,021
1959 Guilloud IBM 704 16,167
1961 Shanks & Wrench IBM 7090 100,265
1966 Guilloud & Filliatre IBM 7030 250,000
1967 Guilloud & Dichampt CDC 6600 500,000
1973 Guilloud & Bouyer CDC 7600 1,001,250
1981 Miyoshi & Kanada FACOM M-200 2,000,036
1982 Guilloud 2,000,050
1982 Tamura MELCOM 900II 2,097,144
1982 Tamura & Kanada HITACHI M-280H 4,194,288
1982 Tamura & Kanada HITACHI M-280H 8,388,576
1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206
1985 10 Gosper Symbolics 3670 17,526,200
1986 1 Bailey CRAY-2 29,360,111
1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414
1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839
1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700
1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551
1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000
1989 6 Chudnovskys IBM 3090 525,229,270
1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898
1989 8 Chudnovskys IBM 3090 1,011,196,691
1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799
1991 8 Chudnovskys 2,260,000,000
1994 5 Chudnovskys 4,044,000,000
1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286
1995 10 Takahashi & Kanada 6,442,450,938
1997 7 Takahashi & Kanada 51,539,600,000
1999 4 Takahashi & Kanada 68,719,470,000
1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000
2002 Takahashi Team 1,241,100,000,000
【圓周率的最新計算紀錄】
[編輯本段]
1、新世界紀錄
圓周率的最新計算紀錄由日本人金田康正的隊伍所創造。他們於2002年算出π值1,241,100,000,000 位小數,這一結果打破了他們於1999年9月18日創造的206,000,000,000位小數的世界紀錄。
2、個人計算圓周率的世界紀錄
在一個現場解說驗證活動中,一名59歲日本老人Akira Haraguchi將圓周率π算到了小數點後的83431位,這名孜孜不倦的59歲老人向觀眾講解了長達13個小時,最終獲得認同。這一紀錄已經被收入了Guinness世界大全中。據報道,此前的紀錄是由一名日本學生於1995年計算出的,當時的精度是小數點後的42000位。
Ⅳ π600位
Ⅳ 圓周率的計算公式
圓周率(Pi)是圓的周長與直徑的比值,公式為:
(5)圓周率600位演算法擴展閱讀
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算宇宙(observable universe)的大小,誤差還不到一個原子的體積 。
以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
π在許多數學領域都有非常重要的作用。
Ⅵ 誰可以計算圓周率後600位數字誰的多我採納誰
圓周率(小數點後10000位)=3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 870193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 518707 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989
----- [1000] -----
3809525720 1065485863 2788659361 5338182796 8230301952 0353018529 6899577362 2599413891 2497217752 8347913151 5574857242 4541506959 5082953311 6861727855 8890750983 8175463746 4939319255 0604009277 0167113900 9848824012 8583616035 6370766010 4710181942 9555961989 4676783744 9448255379 7747268471 0404753464 6208046684 2590694912 9331367702 8989152104 7521620569 6602405803 8150193511 2533824300 3558764024 7496473263 9141992726 0426992279 6782354781 6360093417 2164121992 4586315030 2861829745 5570674983 8505494588 5869269956 9092721079 7509302955 321449 8720275596 0236480665 4991198818 3479775356 6369807426 5425278625 5181841757 4672890977 7727938000 8164706001 6145249192 1732172147 7235014144 1973568548 1613611573 5255213347 5741849468 4385233239 0739414333
4547762416 8625189835 6948556209 9219222184 2725502542 5688767179 049460 4668049886 2723279178 6085784383 8279679766 8145410095 3883786360 9506800642 2512520511 7392984896 0841284886 2694560424 1965285022 2106611863 0674427862 2039194945 0471237137 8696095636 4371917287 4677646575 7396241389 0865832645 9958133904 7802759009
----- [2000] -----
9465764078 9512694683 9835259570 9825822620 5224894077 2671947826 8482601476 9909026401 3639443745 5305068203 4962524517 4939965143 1429809190 6592509372 2169646151 5709858387 4105978859 5977297549 8930161753 9284681382 6868386894 2774155991 8559252459 5395943104 9972524680 8459872736 4469584865 3836736222 6260991246 0805124388 4390451244 1365497627 8079771569 1435997700 1296160894 4169486855 5848406353 4220722258 2848864815 8456028506 0168427394 5226746767 8895252138 5225499546 6672782398 6456596116 3548862305 7745649803 5593634568 1743241125 1507606947 9451096596 0940252288 7971089314 5669136867 2287489405 6010150330 8617928680 9208747609 1782493858 9009714909 675983 6554978189 3129784821 6829989487 2265880485 7564014270 4775551323 7964145152 3746234364
5428584447 9526586782 1051141354 7357395231 1342716610 2135969536 2314429524 8493718711 0145765403 5902799344 0374200731 0578539062 1983874478 0847848968 3321445713 8687519435 0643021845 3191048481 0053706146 8067491927 8191197939 9520614196 6342875444 0643745123 7181921799 9839101591 9561814675 1426912397 4894090718 6494231961
----- [3000] -----
5679452080 9514655022 5231603881 9301420937 6213785595 6638937787 0830390697 9207734672 2182562599 6615014215 0306803844 7734549202 6054146659 2520149744 2850732518 6660021324 3408819071 0486331734 6496514539 0579626856 1005508106 6587969981 6357473638 4052571459 1028970641 4011097120 6280439039 7595156771 5770042033 7869936007 2305587631 7635942187 3125147120 5329281918 2618612586 7321579198 4148488291 6447060957 5270695722 0917567116 7229109816 9091528017 3506712748 5832228718 3520935396 5725121083 5791513698 8209144421 0067510334 6711031412 6711136990 8658516398 3150197016 5151168517 1437657618 3515565088 4909989859 9823873455 2833163550 7647918535 8932261854 8963213293 3089857064 2046752590 7091548141 6549859461 6371802709 8199430992 4488957571 2828905923
2332609729 9712084433 5732654893 8239119325 9746366730 5836041428 1388303203 8249037589 8524374417 0291327656 1809377344 4030707469 2112019130 2033038019 7621101100 4492932151 6084244485 9637669838 9522868478 3123552658 2131449576 8572624334 4189303968 6426243410 7732269780 2807318915 4411010446 8232527162 0105265227 2111660396
----- [4000] -----
6655730925 4711055785 3763466820 6531098965 2691862056 4769312570 5863566201 8558100729 3606598764 8611791045 3348850346 1136576867 5324944166 8039626579 7877185560 8455296541 2665408530 6143444318 5867697514 5661406800 7002378776 5913440171 2749470420 5622305389 9456131407 1127000407 8547332699 3908145466 4645880797 2708266830 6343285878 5698305235 8089330657 5740679545 7163775254 2021149557 6158140025 0126228594 1302164715 5097925923 0990796547 3761255176 5675135751 7829666454 7791745011 2996148903 0463994713 2962107340 4375189573 5961458901 9389713111 7904297828 5647503203 1986915140 2870808599 0480109412 1472213179 4764777262 2414254854 5403321571 8530614228 8137585043 0633217518 2979866223 7172159160 7716692547 4873898665 4949450114 6540628433 6639379003
9769265672 1463853067 3609657120 9180763832 7166416274 8888007869 2560290228 4721040317 2118608204 1900042296 6171196377 9213375751 1495950156 6049631862 9472654736 4252308177 0367515906 7350235072 8354056704 0386743513 6222247715 8915049530 9844489333 0963408780 7693259939 7805419341 4473774418 4263129860 8099888687 4132604721
----- [5000] -----
5695162396 5864573021 6315981931 9516735381 2974167729 4786724229 2465436680 0980676928 2382806899 6400482435 4037014163 1496589794 0924323789 6907069779 4223625082 2168895738 3798623001 5937764716 5122893578 6015881617 5578297352 3344604281 5126272037 3431465319 7777416031 9906655418 7639792933 4419521541 3418994854 4473456738 3162499341 9131814809 2777710386 3877343177 2075456545 3220777092 1201905166 0962804909 2636019759 8828161332 3166636528 6193266863 3606273567 6303544776 2803504507 7723554710 5859548702 7908143562 4014517180 6246436267 9456127531 8134078330 3362542327 8394497538 2437205835 3114771199 2606381334 6776879695 9703098339 1307710987 0408591337 4641442822 7726346594 7047458784 7787201927 7152807317 6790770715 7213444730 6057007334 9243693113 8350493163 1284042512 1925651798 0694113528 0131470130 4781643788 5185290928 5452011658 3934196562 1349143415 9562586586 5570552690 4965209858 0338507224 2648293972 8584783163 0577775606 8887644624 8246857926 0395352773 4803048029 0058760758 2510474709 1643961362 6760449256 2742042083 2085661190 6254543372 1315359584 5068772460
----- [6000] -----
2901618766 7952406163 4252257719 5429162991 9306455377 9914037340 4328752628 8896399587 9475729174 6426357455 2540790914 5135711136 9410911939 3251910760 2082520261 8798531887 7058429725 9167781314 9699009019 2116971737 2784768472 6860849003 3770242429 1651300500 5168323364 3503895170 2989392233 4517220138 1280696501 1784408745 1960121228 5993716231 3017114448 4640903890 6449544400 6198690754 8516026327 5052983491 8740786680 8818338510 2283345085 0486082503 9302133219 7155184306 3545500766 8282949304 1377655279 3975175461 3953984683 3936383047 4611996653 8581538420 5685338621 8672523340 2830871123 2827892125 0771262946 3229563989 8989358211 6745627010 2183564622 0134967151 8819097303 8119800497 3407239610 3685406643 1939509790 1906996395 5245300545 0580685501
9567302292 1913933918 5680344903 9820595510 0226353536 1920419947 4553859381 0234395544 9597783779 0237421617 2711172364 3435439478 2218185286 2408514006 6604433258 8856986705 4315470696 5747458550 3323233421 0730154594 0516553790 6866273337 9958511562 5784322988 2737231989 8757141595 7811196358 3300594087 3068121602 8764962867
----- [7000] -----
4460477464 9159950549 7374256269 0104903778 1986835938 1465741268 0492564879 8556145372 3478673303 9046883834 3634655379 4986419270 5638729317 4872332083 7601123029 9113679386 2708943879 9362016295 1541337142 4892830722 0126901475 4668476535 7616477379 4675200490 7571555278 1965362132 3926406160 1363581559 0742202020 3187277605 2772190055 6148425551 8792530343 5139844253 2234157623 3610642506 3904975008 6562710953 5919465897 5141310348 2276930624 7435363256 9160781547 8181152843 6679570611 0861533150 4452127473 9245449454 2368288606 1340841486 3776700961 2071512491 4043027253 8607648236 3414334623 5189757664 5216413767 9690314950 1910857598 4423919862 9164219399 4907236234 6468441173 9403265918 4044378051 3338945257 4239950829 6591228508 5558215725 0310712570
1266830240 2929525220 1187267675 6220415420 5161841634 8475651699 9811614101 0029960783 8690929160 3028840026 9104140792 8862150784 2451670908 7000699282 1206604183 7180653556 7252532567 5328612910 4248776182 5829765157 9598470356 2226293486 0034158722 9805349896 5022629174 8788202734 2092222453 3985626476 6914905562 8425039127
----- [8000] -----
5010165 5256375678
Ⅶ 圓周率(完整版)
圓周率500位
3.14159 26535 89793 23846 26433
83279 50288 41971 69399 37510
58209 74944 59230 78164 06286
20899 86280 34825 34211 70679
82148 08651 32823 06647 09384
46095 50582 23172 53594 08128
48111 74502 8 70193 85211
05559 64462 29489 54930 38196
44288 10975 66593 34461 28475
64823 37867 83165 27120 19091
45648 56692 34603 48610 45432
66482 13393 60726 02491 41273
72458 70066 06315 58817 48815
20920 96282 92540 91715 36436
78925 90360 01133 05305 48820
46652 13841 46951 94151 16094
33057 27036 57595 91953 09218
61173 81932 61179 31051 18548
07446 23799 62749 56735 18857
52724 89122 79381 83011 94912
圓周率501-1000位
98336 73362 44065 66430 86021
39494 63952 24737 19070 21798
60943 70277 05392 17176 29317
67523 84674 81846 76694 05132
00056 81271 45263 56082 77857
71342 75778 96091 73637 17872
14684 40901 22495 34301 46549
58537 10507 92279 68925 89235
42019 95611 21290 21960 86403
44181 59813 62977 47713 09960
51870 7 49999 99837 29780
49951 05973 17328 16096 31859
50244 59455 34690 83026 42522
30825 33446 85035 26193 11881
71010 00313 78387 52886 58753
32083 81420 61717 76691 47303
59825 34904 28755 46873 11595
62863 88235 37875 93751 95778
18577 80532 17122 68066 13001
92787 66111 95909 21642 01989
圓周率1001-1500位
38095 25720 10654 85863 27886
59361 53381 82796 82303 01952
03530 18529 68995 77362 25994
13891 24972 17752 83479 13151
55748 57242 45415 06959 50829
53311 68617 27855 88907 50983
81754 63746 49393 19255 06040
09277 01671 13900 98488 24012
85836 16035 63707 66010 47101
81942 95559 61989 46767 83744
94482 55379 77472 68471 04047
53464 62080 46684 25906 94912
93313 67702 89891 52104 75216
20569 66024 05803 81501 93511
25338 24300 35587 64024 74964
73263 91419 92726 04269 92279
67823 54781 63600 93417 21641
21992 45863 15030 28618 29745
55706 74983 85054 94588 58692
69956 90927 21079 75093 02955
圓周率1501-2000位
32116 53449 87202 75596 02364
80665 49911 98818 34797 75356
63698 07426 54252 78625 51818
41757 46728 90977 77279 38000
81647 06001 61452 49192 17321
72147 72350 14144 19735 68548
16136 11573 52552 13347 57418
49468 43852 33239 07394 14333
45477 62416 86251 89835 69485
56209 92192 22184 27255 02542
56887 67179 04946 0 46680
49886 27232 79178 60857 84383
82796 79766 81454 10095 38837
86360 95068 00642 25125 20511
73929 84896 08412 84886 26945
60424 19652 85022 21066 11863
06744 27862 20391 94945 04712
37137 86960 95636 43719 17287
46776 46575 73962 41389 08658
32645 99581 33904 78027 59009
圓周率2001-2500位
94657 64078 95126 94683 98352
59570 98258 22620 52248 94077
26719 47826 84826 01476 99090
26401 36394 43745 53050 68203
49625 24517 49399 65143 14298
09190 65925 09372 21696 46151
57098 58387 41059 78859 59772
97549 89301 61753 92846 81382
68683 86894 27741 55991 85592
52459 53959 43104 99725 24680
84598 72736 44695 84865 38367
36222 62609 91246 08051 24388
43904 51244 13654 97627 80797
71569 14359 97700 12961 60894
41694 86855 58484 06353 42207
22258 28488 64815 84560 28506
01684 27394 52267 46767 88952
52138 52254 99546 66727 82398
64565 96116 35488 62305 77456
49803 55936 34568 17432 41125
Ⅷ 圓周率的計算方法
計算方法
圓周率
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。 1、馬青公式 π=16arctan1/5-4arctan1/239 這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。 還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。 2、拉馬努金公式 1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。 1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是: 3、AGM(Arithmetic-Geometric Mean)演算法 高斯-勒讓德公式:
圓周率
這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。 4、波爾文四次迭代式: 這個公式由喬納森·波爾文和彼得·波爾文於1985年發表的。 5、ley-borwein-plouffe演算法 這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發
丘德諾夫斯基公式
表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。 6.丘德諾夫斯基公式 這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本: 7.萊布尼茨公式 π/4=1-1/3+1/5-1/7+1/9-1/11+……