❶ 乘法速算方法與技巧
乘法速算方法與技巧如下:
1、第一個乘數互補,另一個乘數數字相同
如:46x33=?
4+1=55x3=156x3=1846x33=1518這種方法適合前一個乘數相加等於10,後一個乘數數字相同的乘法運算。
這種運算的口訣為:一個頭加1後,頭乘頭,尾乘尾,再合並。
尾數為5的相同數字的乘法
這是乘法中常見且有規律的計算。如35x35=?55x55=?這都是有規律可循的,他們的特點就是尾數為25。
如:35x35=?
3x(3+1)=125x5=2535x35=1225
有這種特點的,做出運算的後兩位數必為25,孩子平時也可以拿著個小技巧去檢驗計算結果。之後前面的尾數就是nx(n+1)的關系,這種快速運算的方法,孩子算出一道題只需5秒鍾!
4、任意兩位數相乘
有很多孩子不喜歡平時通用的豎乘式運算,很多家長都在尋求另外的方式,不如試試。
如:28x36
2x3=68x6=482x6=12 12後填08x3=24 24後填0648+120+240=100這種運算的口訣為:頭x頭,尾x尾,交叉x後填0再相加
❷ 乘法巧算速算方法
1、一位數乘法法則整數乘法低位起,一位數乘法一次積。
個位數乘得若干一,積的末位對個位。
計算準確對好位,乘法口訣是根據。
2、兩位數乘法法則整數乘法低位起,兩位數乘法兩次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
計算準確對好位,兩次乘積加一起。
1、多位數乘法法則整數乘法低位起,幾位數乘法幾次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
百位數乘得若干百,積的末位對百位計算準確對好位,幾次乘積加一起。
2、因數末尾有0的乘法法則因數末尾若有0,寫在後面先不乘,乘完積補上0,有幾個0寫幾個0。
乘法的計演算法則:
(1)數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0)
❸ 多位數乘法的快速計算方法有哪些
多位數乘法的快速計算方法如下:
1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。
2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。
3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。
乘法原理:
如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
設 A是 m×n 的矩陣。
可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故兩個方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以綜上 r(A)=r(A')=r(AA')=r(A'A)
❹ 兩位數速算方法與技巧
操作方法
01
首先兩位數和兩位數相乘,第一個數加上第二個數的個位數,相加的數字寫在等號前面,例如13×15=,先在等號下寫18,分別作為百位和十位,即180,作為草稿。
02
其次,就把兩個兩位數的個位數相乘,得到的兩位數作為十位數和個位數,十位上的數字兩次相加,就可以得到正確答案,例如15×13=,5×3得15,15+180得到195。
03
然後,個位數相乘得一位數就簡單一些,例如11×13=,即140+3=143,這樣出錯的概率少一些,也便於口算。
04
還有一種辦法,就是湊整減零,例如11×14=,可以先算10×14得140,再加上1×14得14,兩個相加得154
❺ 乘法速算方法
乘法口算速算技巧是十位數相同,個位數互補的兩位數乘法,十位加一乘十位,個位數相乘寫後面。十位數互補,個位數相同的兩位數乘法,十位相乘加個位,個位相乘寫後面。
乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數,有理數和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形中的對象或查找其邊長度給定的矩形的區域。矩形的區域不取決於首先測量哪一側,這說明了交換屬性。兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
❻ 誰有多位數相乘的心算口訣或方法
由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。
這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:
⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
演練實例一
速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。
□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--
□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
0847536×2=1695072
乘數為2的進位規律是「2滿5進1」
0×2本個0,後位8,後進1,得1
8×2本個6,後位4,不進,得6
4×2本個8,後位7,滿5進1,
8十1得9
7×2本個4,後位5,滿5進1,
4十1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,
6十1得7
6×2本個2,無後位,得2
在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
□掌握訣竅 人腦勝電腦
史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。
參考資料:http://shifengshou.com/gb/htm/what_shifengshou.htm