⑴ 求解編譯原理的一道題:設有文法如下
首先要做這題你要知道判別文法類型
包括四個層次:
0-型文法(無限制文法或短語結構文法)包括所有的文法。該類型的文法能夠產生所有可被圖靈機識別的語言。可被圖靈機識別的語言是指能夠使圖靈機停機的字串,這類語言又被稱為遞歸可枚舉語言。注意遞歸可枚舉語言與遞歸語言的區別,後者是前者的一個真子集,是能夠被一個總停機的圖靈機判定的語言。
1-型文法(上下文相關文法)生成上下文相關語言。這種文法的產生式規則取如 αAβ -> αγβ 一樣的形式。這里的A 是非終結符號,而 α, β 和 γ 是包含非終結符號與終結符號的字串;α, β 可以是空串,但 γ 必須不能是空串;這種文法也可以包含規則 S->ε ,但此時文法的任何產生式規則都不能在右側包含 S 。這種文法規定的語言可以被線性有界非確定圖靈機接受。
2-型文法生成上下文無關語言。這種文法的產生式規則取如 A -> γ 一樣的形式。這里的A 是非終結符號,γ 是包含非終結符號與終結符號的字串。這種文法規定的語言可以被非確定下推自動機接受。上下文無關語言為大多數程序設計語言的語法提供了理論基礎。
3-型文法(正規文法)生成正規語言。這種文法要求產生式的左側只能包含一個非終結符號,產生式的右側只能是空串、一個終結符號或者一個非終結符號後隨一個終結符號;如果所有產生式的右側都不含初始符號 S ,規則 S -> ε 也允許出現。這種文法規定的語言可以被有限狀態自動機接受,也可以通過正則表達式來獲得。正規語言通常用來定義檢索模式或者程序設計語言中的詞法結構。
正規語言類包含於上下文無關語言類,上下文無關語言類包含於上下文相關語言類,上下文相關語言類包含於遞歸可枚舉語言類。這里的包含都是集合的真包含關系,也就是說:存在遞歸可枚舉語言不屬於上下文相關語言類,存在上下文相關語言不屬於上下文無關語言類,存在上下文無關語言不屬於正規語言類。
1)本題應該是--上下文無關文法
句子是產生式在推導時「僅僅有終結符」的任何一步
2)%mm%nn 是一個句子
由於下面一題的圖我等級不夠 不能貼圖 發你郵箱
⑵ 編譯過程分為哪幾個階段各階段的遵循的原則、識別機構、使用的文法編譯原理
編譯原理中的遍概念
編譯階段也常常劃分為兩大步驟,分析步驟和綜合步驟 分析步驟和綜合步驟 分析步驟是指對源程序的分析 -線性分析(詞法分析或掃描) -層次分析(語法分析) -語義分析 綜合步驟是指後端的工作,為目標程序的生成而進行的綜合
你分析過嗎?若按照這種組合方式實現編譯程序,可以設想,某一編譯程序的前端加上相應不同的後 端則可以為不同的機器構成同一個源語言的編譯程序。也可以設想,不同語言編譯的前端生成同一種中間 語言,再使用一個共同的後端,則可為同一機器生成幾個語言的編譯程序。
一個編譯過程可由一遍、兩遍或多遍完成。所謂"遍",也稱作"趟",是對源程序或其等價的中間語言程 序從頭到尾掃視並完成規定任務的過程。每一遍掃視可完成上述一個階段或多個階段的工作。例如一遍可 以只完成詞法分析工作;一遍完成詞法分析和語法分析工作;甚至一遍完成整個編譯工作。對於多遍的編 譯程序,第一遍的輸入是用戶書寫的源程序,最後一遍的輸出是目標語言程序,其餘是上一遍的輸出為下 一遍的輸入。
在實際的編譯系統的設計中,編譯的幾個階段的工作究竟應該怎樣組合,即編譯程序究竟分成幾遍, 參考的因素主要是源語言和機器(目標機)的特徵。比如源語言的結構直接影響編譯的遍的劃分;像 PL/1 或 ALGOL 68 那樣的語言,允許名字的說明出現在名字的使用之後,那麼在看到名字之前是不便為包含該名 字的表達式生成代碼的,這種語言的編譯程序至少分成兩遍才容易生成代碼。另外機器的情況,即編譯程 序工作的環境也影響編譯程序的遍數的劃分。遍數多一點,整個編譯程序的邏輯結構可能清晰些,但遍數 多即意味著增加讀寫中間文件的次數,勢必消耗較多時間,一般會比一遍的編譯要慢。
⑶ 【編譯原理】第二章:語言和文法
上述文法 表示,該文法由終結符集合 ,非終結符集合 ,產生式集合 ,以及開始符號 構成。
而產生式 表示,一個表達式(Expression) ,可以由一個標識符(Identifier) 、或者兩個表達式由加號 或乘號 連接、或者另一個表達式用括弧包裹( )構成。
約定 :在不引起歧義的情況下,可以只寫產生式。如以上文法可以簡寫為:
產生式
可以簡寫為:
如上例中,
可以簡寫為:
給定文法 ,如果有 ,那麼可以將符號串 重寫 為 ,記作 ,這個過程稱為 推導 。
如上例中, 可以推導出 或 或 等等。
如果 ,
可以記作 ,則稱為 經過n步推導出 ,記作 。
推導的反過程稱為 歸約 。
如果 ,則稱 是 的一個 句型(sentential form )。
由文法 的開始符號 推導出的所有句子構成的集合稱為 文法G生成的語言 ,記作 。
即:
例
文法
表示什麼呢?
代表小寫字母;
代表數字;
表示若干個字母和數字構成的字元串;
說明 是一個字母、或者是字母開頭的字元串。
那麼這個文法表示的即是,以字母開頭的、非空的字元串,即標識符的構成方式。
並、連接、冪、克林閉包、正閉包。
如上例表示為:
中必須包含一個 非終結符 。
產生式一般形式:
即上式中只有當上下文滿足 與 時,才能進行從 到 的推導。
上下文有關文法不包含空產生式( )。
產生式的一般形式:
即產生式左邊都是非終結符。
右線性文法 :
左線性文法 :
以上都成為正則文法。
即產生式的右側只能有一個終結符,且所有終結符只能在同一側。
例:(右線性文法)
以上文法滿足右線性文法。
以上文法生成一個以字母開頭的字母數字串(標識符)。
以上文法等價於 上下文無關文法 :
正則文法能描述程序設計語言中的多數單詞。
正則文法能描述程序設計語言中的多數單詞,但不能表示句子構造,所以用到最多的是CFG。
根節點 表示文法開始符號S;
內部節點 表示對產生式 的應用;該節點的標號是產生式左部,子節點從左到右表示了產生式的右部;
葉節點 (又稱邊緣)既可以是非終結符也可以是終結符。
給定一個句型,其分析樹的每一棵子樹的邊緣稱為該句型的一個 短語 。
如果子樹高度為2,那麼這棵子樹的邊緣稱為該句型的一個 直接短語 。
直接短語一定是某產生式的右部,但反之不一定。
如果一個文法可以為某個句子生成 多棵分析樹 ,則稱這個文法是 二義性的 。
二義性原因:多個if只有一個else;
消岐規則:每個else只與最近的if匹配。
⑷ 編譯原理的LL(1)文法是什麼意思
1.文法不含左遞歸,沒有公共左因子
2.對於文法中的每個非終結符A的產生式的候選首符集兩兩不相交。
3.對於文法中的每個非終結符A,它存在某個候選首符集包括ε,則FIRST(A)∩FOLLOW(A)=空
滿足以上條件的文法為LL(1)文法
⑸ 編譯原理 設文法G[S] 求答案!
·消除左遞歸 S→aAS'|∧aAS'
S'→VaAS'|ε
對A的產生式提取左因子 A→∧aA' A'→A|ε
· 非終結符合 First Follow
S a∧ #
S』 V ε #
A ∧ #
A『 ∧ #
Select(S→aAS')=a
Select(S→∧aAS')=∧
Select(S'→VaAS')=V
Select(S'→ε)=#
Select(A→∧aA')=∧
Select(A'→A)=∧
Select(A'→ε)=#
符合LL(1)文法
a ∧ V #
S S→aAS' S→∧aAS'
S' S'→VaAS' S'→ε
A A→∧aA'
A' A'→A A'→ε
⑹ 編譯原理-文法定義
文法定義公式如下:
Chomsky 文法分類將文法分為四種,0型文法( PSG )、1型文法( CSG )、2型文法( CFG )和3型文法( RG )。
又被稱為無限制文法(Unrestricted Grammar), 或者短語結構文法(Phrase Structure Grammar)
定義: 對於產生式 α→β , α 至少包含一個非終結符。
為什麼要叫無限制文法,明明它要求產生式的左部必須包含一個非終結符。
又被稱為上下文有關文法(Context-Sensitive Grammar)
定義:對於產生式 α→β , |α| <= |β| , 僅僅 S→ε 除外
為什麼叫做上下文有關文法?
一般情況下,這種產生式的形式為 α1Aα2→α1βα2
又被稱為上下文無關文法(Context-Free Grammar)
定義:對任一產生式 α→β ,都有 α∈VN,β∈(VN∪VT)*
為什麼叫上下文無關文法?
又被稱為正則文法(Regular Grammar,RG),分為右線性(Right Linear)文法和左線性(Left Linear)文法。
定義: 對任一產生式 α→β ,都有 α∈VN,β最多兩個字元元素,如果有二個字元必須是(終結符+非終結符)的格式,如果是一個字元,那麼必須是終結符。
根據產生式右部非終結符位置不同,分為右線性文法和左線性文法。
可以看出,不同文法就是對產生式進行逐層的限制,所以各個文法是包含關系,即0型文法包含1型文法;1型文法又包含2型文法;2型文法最後包含3型文法。
⑺ 編譯原理中的語法和文法一樣嗎
編譯原理中的語法和文法是不一樣的,但卻融會貫通。
在計算機科學中,文法是編譯原理的基礎,是描述一門程序設計語言和實現其編譯器的方法。
文法分成四種類型,即0型、1型、2型和3型。這幾類文法的差別在於對產生式施加不同的限制。
形式語言,這種理論對計算機科學有著深刻的影響,特別是對程序設計語言的設計、編譯方法和計算復雜性等方面更有重大的作用。
多數程序設計語言的單詞的語法都能用正規文法或3型文法(3型文法G=(VN,VT,P,S)的P中的規則有兩種形式:一種是前面定義的形式,即:A→aB或A→a其中A,B∈VN ,a∈VT*,另一種形式是:A→Ba或A→a,前者稱為右線性文法,後者稱為左線性文法。正規文法所描述的是VT*上的正規集)來描述。
四個文法類的定義是逐漸增加限制的,因此每一種正規文法都是上下文無關的,每一種上下文無關文法都是上下文有關的,而每一種上下文有關文法都是0型文法。稱0型文法產生的語言為0型語言。上下文有關文法、上下文無關文法和正規文法產生的語言分別稱為上下文有關語言、上下文無關語言和正規語言。
⑻ 編譯原理
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象[1]。
中文名
編譯原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
領域
計算機專業的一門重要專業課[1]
快速
導航
編譯器
編譯原理課程
編譯技術的發展
編譯的基本流程
編譯過程概述
基本概念
編譯原理即是對高級程序語言進行翻譯的一門科學技術, 我們都知道計算機程序由程序語言編寫而成, 在早期計算機程序語言發展較為緩慢, 因為計算機存儲的數據和執行的程序都是由0、1代碼組合而成的, 那麼在早期程序員編寫計算機程序時必須十分了解計算機的底層指令代碼通過將這些微程序指令組合排列從而完成一個特定功能的程序, 這就對程序員的要求非常高了。人們一直在研究如何如何高效的開發計算機程序, 使編程的門檻降低。[2]
編譯器
C語言編譯器是一種現代化的設備, 其需要藉助計算機編譯程序, C語言編譯器的設計是一項專業性比較強的工作, 設計人員需要考慮計算機程序繁瑣的設計流程, 還要考慮計算機用戶的需求。計算機的種類在不斷增加, 所以, 在對C語言編譯器進行設計時, 一定要增加其適用性。C語言具有較強的處理能力, 其屬於結構化語言, 而且在計算機系統維護中應用比較多, C語言具有高效率的優點, 在其不同類型的計算機中應用比較多。[3]
C語言編譯器前端設計
編譯過程一般是在計算機系統中實現的, 是將源代碼轉化為計算機通用語言的過程。編譯器中包含入口點的地址、名稱以及機器代碼。編譯器是計算機程序中應用比較多的工具, 在對編譯器進行前端設計時, 一定要充分考慮影響因素, 還要對詞法、語法、語義進行分析。[3]
1 詞法分析[3]
詞法分析是編譯器前端設計的基礎階段, 在這一階段, 編譯器會根據設定的語法規則, 對源程序進行標記, 在標記的過程中, 每一處記號都代表著一類單詞, 在做記號的過程中, 主要有標識符、關鍵字、特殊符號等類型, 編譯器中包含詞法分析器、輸入源程序、輸出識別記號符, 利用這些功能可以將字型大小轉化為熟悉的單詞。[3]
2 語法分析[3]
語法分析是指利用設定的語法規則, 對記號中的結構進行標識, 這包括句子、短語等方式, 在標識的過程中, 可以形成特殊的結構語法樹。語法分析對編譯器功能的發揮有著重要影響, 在設計的過程中, 一定要保證標識的准確性。[3]
3 語義分析[3]
語義分析也需要藉助語法規則, 在對語法單元的靜態語義進行檢查時, 要保證語法規則設定的准確性。在對詞法或者語法進行轉化時, 一定要保證語法結構設置的合法性。在對語法、詞法進行檢查時, 語法結構設定不合理, 則會出現編譯錯誤的問題。前端設計對精確性要求比較好, 設計人員能夠要做好校對工作, 這會影響到編譯的准確性, 如果前端設計存在失誤, 則會影響C語言編譯的效果。[3]
⑼ 編譯原理-LL1文法詳細講解
我們知道2型文法( CFG ),它的每個產生式類型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。
例如, 一個表達式的文法:
最終推導出 id + (id + id) 的句子,那麼它的推導過程就會構成一顆樹,即 CFG 分析樹:
從分析樹可以看出,我們從文法開始符號起,不斷地利用產生式的右部替換產生式左部的非終結符,最終推導出我們想要的句子。這種方式我們稱為自頂向下分析法。
從文法開始符號起,不斷用非終結符的候選式(即產生式)替換當前句型中的非終結符,最終得到相應的句子。
在每一步推導過程中,我們需要做兩個選擇:
因為一個句型中,可能存在多個非終結符,我們就不確定選擇那一個非終結符進行替換。
對於這種情況,我們就需要做強制規定,每次都選擇句型中第一個非終結符進行替換(或者每次都選擇句型中最後一個非終結符進行替換)。
自頂向下的語法分析採用最左推導方式,即總是選擇每個句型的最左非終結符進行替換。
最終的結果是要推導出一個特定句子(例如 id + (id + id) )。
我們將特定句子看成一個輸入字元串,而每一個非終結符對應一個處理方法,這個處理方法用來匹配輸入字元串的部分,演算法如下:
方法解析:
這種方式稱為遞歸下降分析( Recursive-Descent Parsing ):
當選擇的候選式不正確,就需要回溯( backtracking ),重新選擇候選式,進行下一次嘗試匹配。因為要不斷的回溯,導致分析效率比較低。
這種方式叫做預測分析( Predictive Parsing ):
要實現預測分析,我們必須保證從文法開始符號起,每一個推導過程中,當前句型最左非終結符 A 對於當前輸入字元 a ,只能得到唯一的 A 候選式。
根據上面的解決方法,我們首先想到,如果非終結符 A 的候選式只有一個以終結符 a 開頭候選式不就行了么。
進而我們可以得出,如果一個非終結符 A ,它的候選式都是以終結符開頭,並且這些終結符都各不相同,那麼本身就符合預測分析了。
這就是S_文法,滿足下面兩個條件:
例子:
這就是一個典型的S_文法,它的每一個非終結符遇到任一終結符得到候選式是確定的。如 S -> aA | bAB , 只有遇到終結符 a 和 b 的時候,才能返回 S 的候選式,遇到其他終結符時,直接報錯,匹配不成功。
雖然S_文法可以實現預測分析,但是從它的定義上看,S_文法不支持空產生式(ε產生式),極大地限制了它的應用。
什麼是空產生式(ε產生式)?
例子
這里 A 有了空產生式,那麼 S 的產生式組 S -> aA | bAB ,就可以是 a | bB ,這樣 a , bb , bc 就變成這個文法 G 的新句子了。
根據預測分析的定義,非終結符對於任一終結符得到的產生式是確定的,要麼能獲取唯一的產生式,要麼不匹配直接報錯。
那麼空產生式何時被選擇呢?
由此可以引入非終結符 A 的後繼符號集的概念:
定義: 由文法 G 推導出來的所有句型,可以出現在非終結符 A 後邊的終結符 a 的集合,就是這個非終結符 A 的後繼符號集,記為 FOLLOW(A) 。
因此對於 A -> ε 空產生式,只要遇到非終結符 A 的後繼符號集中的字元,可以選擇這個空產生式。
那麼對於 A -> a 這樣的產生式,只要遇到終結符 a 就可以選擇了。
由此我們引入的產生式可選集概念:
定義: 在進行推導時,選用非終結符 A 一個產生式 A→β 對應的輸入符號的集合,記為 SELECT(A→β)
因為預測分析要求非終結符 A 對於輸入字元 a ,只能得到唯一的 A 候選式。
那麼對於一個文法 G 的所有產生式組,要求有相同左部的產生式,它們的可選集不相交。
在 S_文法基礎上,我們允許有空產生式,但是要做限制:
將上面例子中的文法改造:
但是q_文法的產生式不能是非終結符打頭,這就限制了其應用,因此引入LL(1)文法。
LL(1)文法允許產生式的右部首字元是非終結符,那麼怎麼得到這個產生式可選集。
我們知道對於產生式:
定義: 給定一個文法符號串 α , α 的 串首終結符集 FIRST(α) 被定義為可以從 α 推導出的所有串首終結符構成的集合。
定義已經了解清楚了,那麼該如何求呢?
例如一個文法符號串 BCDe , 其中 B C D 都是非終結符, e 是終結符。
因此對於一個文法符號串 X1X2 … Xn ,求解 串首終結符集 FIRST(X1X2 … Xn) 演算法:
但是這里有一個關鍵點,如何求非終結符的串首終結符集?
因此對於一個非終結符 A , 求解 串首終結符集 FIRST(A) 演算法:
這里大家可能有個疑惑,怎麼能將 FIRST(Bβ) 添加到 FIRST(A) 中,如果問文法符號串 Bβ 中包含非終結符 A ,就產生了循環調用的情況,該怎麼辦?
對於 串首終結符集 ,我想大家疑惑的點就是,串首終結符集到底是針對 文法符號串 的,還是針對 非終結符 的,這個容易弄混。
其實我們應該知道, 非終結符 本身就屬於一個特殊的 文法符號串 。
而求解 文法符號串 的串首終結符集,其實就是要知道文法符號串中每個字元的串首終結符集:
上面章節我們知道了,對於非終結符 A 的 後繼符號集 :
就是由文法 G 推導出來的所有句型,可以出現在非終結符 A 後邊的終結符的集合,記為 FOLLOW(A) 。
仔細想一下,什麼樣的終結符可以出現在非終結符 A 後面,應該是在產生式中就位於 A 後面的終結符。例如 S -> Aa ,那麼終結符 a 肯定屬於 FOLLOW(A) 。
因此求非終結符 A 的 後繼符號集 演算法:
如果非終結符 A 是產生式結尾,那麼說明這個產生式左部非終結符後面能出現的終結符,也都可以出現在非終結符 A 後面。
我們可以求出 LL(1) 文法中每個產生式可選集:
根據產生式可選集,我們可以構建一個預測分析表,表中的每一行都是一個非終結符,表中的每一列都是一個終結符,包括結束符號 $ ,而表中的值就是產生式。
這樣進行語法推導的時候,非終結符遇到當前輸入字元,就可以從預測分析表中獲取對應的產生式了。
有了預測分析表,我們就可以進行預測分析了,具體流程:
可以這么理解:
我們知道要實現預測分析,要求相同左部的產生式,它們的可選集是不相交。
但是有的文法結構不符合這個要求,要進行改造。
如果相同左部的多個產生式有共同前綴,那麼它們的可選集必然相交。
例如:
那麼如何進行改造呢?
其實很簡單,進行如下轉換:
如此文法的相同左部的產生式,它們的可選集是不相交,符合現預測分析。
這種改造方法稱為 提取公因子演算法 。
當我們自頂向下的語法分析時,就需要採用最左推導方式。
而這個時候,如果產生式左部和產生式右部首字元一樣(即A→Aα),那麼推導就可能陷入無限循環。
例如:
因此對於:
文法中不能包含這兩種形式,不然最左推導就沒辦法進行。
例如:
它能夠推導出如下:
你會驚奇的發現,它能推導出 b 和 (a)* (即由 0 個 a 或者無數個 a 生成的文法符號串)。其實就可以改造成:
因此消除 直接左遞歸 演算法的一般形式:
例如:
消除間接左遞歸的方法就是直接帶入消除,即
消除間接左遞歸演算法:
這個演算法看起來描述很多,其實理解起來很簡單:
思考 : 我們通過 Ai -> Ajβ 來判斷是不是間接左遞歸,那如果有產生式 Ai -> BAjβ 且 B -> ε ,那麼它是不是間接左遞歸呢?
間接地我們可以推出如果一個產生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那麼這個產生式是不是間接左遞歸。
⑽ 編譯原理的文法是什麼
文法是描述語言規則的形式規則。實際上就是用一個四元組G=(VT,VN,S,P)定義的一個推理方式。其中VT是終結符,VN是非終結符,S是開始符號,P是一組產生規則。