㈠ 演算法工程師 累嗎
演算法工程師不累,待遇很高,但是要求也高,必須要有強的數學基礎,加上扎實的圖像處理基礎要有很強的編程能力。想了解演算法工程師推薦咨詢達內教育。
達內「因材施教、分級培優「差異化教學模式,讓每一位來達內學習的學員都能找到適合自己的課程。累計培養100萬學員,並且獨創TTS8.0教學系統,1v1督學,跟蹤式學習,有疑問隨時溝通。該機構26大課程體系緊跟企業需求,企業級項目,課程穿插大廠真實項目講解,對標企業人才標准,制定專業學習計劃,囊括主流熱點技術。達內跟蹤式學習,有疑問隨時溝通。穿插大廠真實項目講解,對標企業人才標准,制定專業學習計劃,囊括主流熱點技術。 感興趣的話點擊此處,免費學習一下
想了解更多有關演算法工程師的相關信息,推薦咨詢達內教育。該機構是引領行業的職業教育公司,致力於面向IT互聯網行業培養人才,達內大型T專場招聘會每年定期舉行,為學員搭建快捷高效的雙選綠色通道,在提升學員的面試能力、積累面試經驗同時也幫助不同技術方向的達內學員快速就業!
㈡ 都快2021年了,演算法崗位應該怎樣准備面試
說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。
早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。
我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。
接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。
核心能力
由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。
模型理解
演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。
在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。
所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。
數據分析
演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。
第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。
第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。
工程能力
雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。
並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。
時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。
㈢ 騰訊筆試的通過率高嗎是多少
騰訊筆試的通過率高,大概是80%。
騰訊的筆試一般出題較為簡單,大部分的應聘者都能通過自身的知識能夠有效的通過騰訊的筆試,筆試通過率較高。
騰訊的筆試一般比較注重基礎,特別是校長,而社會招聘中就需要看你以前的工作經歷,還有實習經歷。以前的工作還有實習經歷尤為重要,因為這個是參考能否入職的一個重要標准。
(3)騰訊演算法崗有多難擴展閱讀:
注意事項
1、筆試之前一定要做好訓練,像邏輯分析題目找到其中的規律掌握方法其實就很好選擇,有時候根本也不用讀一遍再讀一遍就可以直接選出答案,市面上都有這樣的練習冊需要認真准備。
2、一些文學常識等等都是可以提前翻看的,機會都是留給有準備的人的。其實不乏有抱著試一試的心態去的,過就是運氣,不過也無所謂,所有有很多人會吐槽題目真的好難,是真的難,因為都沒有好好准備怎麼可能一個小時回答出40道題目。
㈣ 你覺得演算法工程師的就業前景如何
隨著大數據和人工智慧領域的不斷深入發展,自然語言處理、機器學習等方向成為求職的大熱門,演算法工程師也自然而然成為目前最炙手可熱的崗位。雖然演算法工程師一直被頻頻提及,但是許多人對這個崗位的了解還知之甚少。那麼演算法工程師究竟是做什麼的?發展前景怎麼樣呢?
由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。