導航:首頁 > 源碼編譯 > 圖像塗抹演算法

圖像塗抹演算法

發布時間:2022-12-24 15:19:17

1. 圖像處理演算法有哪些

多了:圖像分割、增強、濾波、形態學,等等,推薦看數字圖像處理那本厚書

2. 在圖像處理中有哪些演算法

1、圖像變換:

由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。

2、圖像編碼壓縮

圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。

壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。

編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。

3、圖像增強和復原:

圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。

圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。

4、圖像分割:

圖像分割是數字圖像處理中的關鍵技術之一。

圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。

5、圖像描述:

圖像描述是圖像識別和理解的必要前提。

一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。

6、圖像分類:

圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。

圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。

(2)圖像塗抹演算法擴展閱讀:

圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。

數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。

數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,

但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。

3. 在圖像處理中有哪些演算法

太多了,去找本書看看吧!給個大概的介紹好了
圖像處理主要分為兩大部分:
1、圖像增強
空域方法有 直方圖均衡化
灰度線性變化
線性灰度變化
分段線性灰度變化
非線性灰度變化(對數擴展
指數擴展)

圖像平滑
領域平均法(加權平均法
非加權領域平均法)
中值濾波
圖像銳化
Roberts運算元
Sobel運算元
拉普拉斯運算元

頻域方法有
低通濾波
理想低通濾波
巴特沃斯低通濾波
指數低通濾波
梯形低通濾波
高通濾波
理想高通濾波
巴特沃斯高通濾波
指數高通濾波
梯形高通濾波
彩色圖像增強(真彩色、假彩色、偽彩色增強)
2、圖像模糊處理
圖像模糊處理
運動模糊(維納濾波
最小均方濾波
盲卷積
……


高斯模糊(維納濾波
最小均方濾波
盲卷積
……

圖像去噪處理
高斯雜訊
(維納濾波
樣條插值
低通濾波
……

椒鹽雜訊
(中值濾波
……

4. 圖像的特徵提取都有哪些演算法

圖像的經典特徵提取方法:
1 HOG(histogram of Oriented Gradient,方向梯度直方圖)
2 SIFT(Scale-invariant features transform,尺度不變特徵變換)
3 SURF(Speeded Up Robust Features,加速穩健特徵,對sift的改進)
4 DOG(Difference of Gaussian,高斯函數差分)
5 LBP(Local Binary Pattern,局部二值模式)
6 HAAR(haar-like ,haar類特徵,注意haar是個人名,haar這個人提出了一個用作濾波器的小波,為這個濾波器命名為haar濾波器,後來有人把這個濾波器用到了圖像上,就是圖像的haar特徵)

圖像的一般提取特徵方法:
1 灰度直方圖,顏色直方圖
2 均值,方差
3 信號處理類的方法:灰度共生矩陣,Tamura紋理特徵,自回歸紋理特徵,小波變換。
4 傅里葉形狀描述符,小波描述符等,

5. 圖像處理的濾鏡演算法

將顏色的RGB設置為相同的值即可使得圖片為灰色,一般處理方法有:
1、取三種顏色的平均值
2、取三種顏色的最大值(最小值)
3、加權平均值:0.3 R + 0.59 G + 0.11*B

顧名思義,就是圖片的顏色只有黑色和白色,可以計算rgb的平均值arg,arg>=100,r=g=b=255,否則均為0

就是RGB三種顏色分別取255的差值。

rgb三種顏色取三種顏色的最值的平均值。

就是只保留一種顏色,其他顏色設為0

高斯模糊的原理就是根據正態分布使得每個像素點周圍的像素點的權重不一致,將各個權重(各個權重值和為1)與對應的色值相乘,所得結果求和為中心像素點新的色值。我們需要了解的高斯模糊的公式:

懷舊濾鏡公式

公式:
r = r 128/(g+b +1);
g = g
128/(r+b +1);
b = b*128/(g+r +1);

公式:
r = (r-g-b) 3/2;
g = (g-r-b)
3/2;
b = (b-g-r)*3/2;

公式:
R = |g – b + g + r| * r / 256

G = |b – g + b + r| * r / 256;

B = |b – g + b + r| * g / 256;

公式:
r = r * 0.393 + g * 0.769 + b * 0.189;
g = r * 0.349 + g * 0.686 + b * 0.168;
b = r * 0.272 + g * 0.534 + b * 0.131;

最後是一個廣告貼,最近新開了一個分享技術的公眾號,歡迎大家關注👇

6. 數字圖像處理的基本演算法及要解決的主要問題

圖像處理,是對圖像進行分析、加工、和處理,使其滿足視覺、心理以及其他要求的技術。圖像處理是信號處理在圖像域上的一個應用。目前大多數的圖像是以數字形式存儲,因而圖像處理很多情況下指數字圖像處理。此外,基於光學理論的處理方法依然佔有重要的地位。

圖像處理是信號處理的子類,另外與計算機科學、人工智慧等領域也有密切的關系。

傳統的一維信號處理的方法和概念很多仍然可以直接應用在圖像處理上,比如降噪、量化等。然而,圖像屬於二維信號,和一維信號相比,它有自己特殊的一面,處理的方式和角度也有所不同。
目錄
[隱藏]

* 1 解決方案
* 2 常用的信號處理技術
o 2.1 從一維信號處理擴展來的技術和概念
o 2.2 專用於二維(或更高維)的技術和概念
* 3 典型問題
* 4 應用
* 5 相關相近領域
* 6 參見

[編輯] 解決方案

幾十年前,圖像處理大多數由光學設備在模擬模式下進行。由於這些光學方法本身所具有的並行特性,至今他們仍然在很多應用領域佔有核心地位,例如 全息攝影。但是由於計算機速度的大幅度提高,這些技術正在迅速的被數字圖像處理方法所替代。

從通常意義上講,數字圖像處理技術更加普適、可靠和准確。比起模擬方法,它們也更容易實現。專用的硬體被用於數字圖像處理,例如,基於流水線的計算機體系結構在這方面取得了巨大的商業成功。今天,硬體解決方案被廣泛的用於視頻處理系統,但商業化的圖像處理任務基本上仍以軟體形式實現,運行在通用個人電腦上。

[編輯] 常用的信號處理技術

大多數用於一維信號處理的概念都有其在二維圖像信號領域的延伸,它們中的一部分在二維情形下變得十分復雜。同時圖像處理也具有自身一些新的概念,例如,連通性、旋轉不變性,等等。這些概念僅對二維或更高維的情況下才有非平凡的意義。

圖像處理中常用到快速傅立葉變換,因為它可以減小數據處理量和處理時間。

[編輯] 從一維信號處理擴展來的技術和概念

* 解析度(Image resolution|Resolution)
* 動態范圍(Dynamic range)
* 帶寬(Bandwidth)
* 濾波器設計(Filter (signal processing)|Filtering)
* 微分運算元(Differential operators)
* 邊緣檢測(Edge detection)
* Domain molation
* 降噪(Noise rection)

[編輯] 專用於二維(或更高維)的技術和概念

* 連通性(Connectedness|Connectivity)
* 旋轉不變性(Rotational invariance)

[編輯] 典型問題

* 幾何變換(geometric transformations):包括放大、縮小、旋轉等。
* 顏色處理(color):顏色空間的轉化、亮度以及對比度的調節、顏色修正等。
* 圖像合成(image composite):多個圖像的加、減、組合、拼接。
* 降噪(image denoising):研究各種針對二維圖像的去噪濾波器或者信號處理技術。
* 邊緣檢測(edge detection):進行邊緣或者其他局部特徵提取。
* 分割(image segmentation):依據不同標准,把二維圖像分割成不同區域。
* 圖像製作(image editing):和計算機圖形學有一定交叉。
* 圖像配准(image registration):比較或集成不同條件下獲取的圖像。
* 圖像增強(image enhancement):
* 圖像數字水印(image watermarking):研究圖像域的數據隱藏、加密、或認證。
* 圖像壓縮(image compression):研究圖像壓縮。

[編輯] 應用

* 攝影及印刷 (Photography and printing)
* 衛星圖像處理 (Satellite image processing)
* 醫學圖像處理 (Medical image processing)
* 面孔識別, 特徵識別 (Face detection, feature detection, face identification)
* 顯微圖像處理 (Microscope image processing)
* 汽車障礙識別 (Car barrier detection)

[編輯] 相關相近領域

* 分類(Classification)
* 特徵提取(Feature extraction)
* 模式識別(Pattern recognition)
* 投影(Projection)
* 多尺度信號分析(Multi-scale signal analysis)
* 離散餘弦變換(The Discrete Cosine Transform)

7. 把圖像變模糊的演算法一般是怎樣實現的

第一步:先復制背景圖層。第二步:濾鏡——模糊——高斯模糊(數值大小跟據你想要的效果定)第三步:為復制北影圖層添加蒙版,再用畫筆工具擦出你想要的清楚的地方!

8. 圖像處理的演算法有哪些

圖像處理基本演算法操作從處理對象的多少可以有如下劃分:
一)點運算:處理點單元信息的運算
二)群運算:處理群單元 (若干個相鄰點的集合)的運算
1.二值化操作
圖像二值化是圖像處理中十分常見且重要的操作,它是將灰度圖像轉換為二值圖像或灰度圖像的過程。二值化操作有很多種,例如一般二值化、翻轉二值化、截斷二值化、置零二值化、置零翻轉二值化。
2.直方圖處理
直方圖是圖像處理中另一重要處理過程,它反映圖像中不同像素值的統計信息。從這句話我們可以了解到直方圖信息僅反映灰度統計信息,與像素具體位置沒有關系。這一重要特性在許多識別類演算法中直方圖處理起到關鍵作用。
3.模板卷積運算
模板運算是圖像處理中使用頻率相當高的一種運算,很多操作可以歸結為模板運算,例如平滑處理,濾波處理以及邊緣特徵提取處理等。這里需要說明的是模板運算所使用的模板通常說來就是NXN的矩陣(N一般為奇數如3,5,7,...),如果這個矩陣是對稱矩陣那麼這個模板也稱為卷積模板,如果不對稱則是一般的運算模板。我們通常使用的模板一般都是卷積模板。如邊緣提取中的Sobel運算元模板。

9. 誰能告訴我ps是如何將圖像的邊緣處理的那麼光滑並且主體不模糊的 演算法原理是什麼

先復制一個圖。。有濾鏡里的高斯模糊調整復制出來的圖層。再在這層上加蒙版。用黑色畫筆塗抹不需要模糊的地方。

10. 無縫貼圖演算法原理

親你好,無縫貼圖就是採用一小塊圖案,平鋪成包含重復紋理的大幅畫面的技術。磚牆類是其中最難處理的案例,並對素材的質量依賴性較高。
當為磚牆拍攝照片用於素材時,一定要盡量減小透視效果,以便於後續的紋理處理。
我使用 Jeremy Englemans Public Textures 下載的磚牆照片來做示範。

第一步是在照片中選擇一塊正方形區域進行裁切。注意選框要沿著磚縫走,而且上下兩條磚的排列要錯開,這樣平鋪時紋理的銜接才會更自然。

裁切好後,選擇『濾鏡>其它>位移』工具,『未定義區域』選『折回』,水平和垂直方向各位移一半的圖像距離。如圖所示,紅線標注的牆縫應該對齊到藍線標注的位置。有兩種方法可以做到。一種是加寬畫面,讓紅色和藍色對接上,另一種是把中間的結合處縮短一點。從最後的效果來看,我選擇加寬。但這樣做有一個缺點,就是畫面的解析度會有損失。不過沒關系,一般游戲用的貼圖尺寸為256像素,我裁切的大小有400多像素,由畫面拉伸造成的解析度損失不會對最終效果有任何影響。

檢查完畢,在位移中輸入相反的數值,讓圖像恢復原樣。
觀察紋理還會發現一個問題——照片的透視變形。從紅線可以看出牆縫是斜的,左邊比右邊窄。在對接牆縫之前,先把這個問題處理掉。

使用『變換>移動>透視』來修正上面的問題。

按住 shift 鍵分別朝左上和左下方向拖動兩個相應位置的控制點。稍微移動一點距離,圖片的透視變形效果就被糾正了。

按 ctrl+a 選擇整個畫布,然後分別按下 alt+i 和 alt+p 裁切選區,這樣就把剛才拉伸出來的左半邊多出畫面的部分刪除掉了,避免後續的位移操作中再次出現。
現在使用編輯>變換>縮放工具將圖像沿右側方向拉寬,根據最開始觀察的位移圖,可以判斷大概多出半個磚頭的距離。注意不要按著 shift 鍵,那樣就變成『按比例縮放』了。

重新按ctrl+a全選畫布並裁切,去掉多出畫面的部分。
重復最開始的步驟,位移畫面,牆縫的各處接線已經對齊了,使用『仿製圖章』工具抹除顏色接縫。

使用『仿製圖章』需要更多的耐心和技巧,定義+號位置為仿製點,然後在o形位置塗抹。完成後如下圖所示。

閱讀全文

與圖像塗抹演算法相關的資料

熱點內容
程序員大咖java 瀏覽:62
蘋果手機文檔安卓上怎麼打開 瀏覽:527
如何做淘寶代理伺服器 瀏覽:664
gz壓縮文件夾 瀏覽:179
字母h從右往左跑的c語言編程 瀏覽:127
安卓手機如何擁有蘋果手機橫條 瀏覽:765
業余編程語言哪個好學 瀏覽:137
按照文件夾分個壓縮 瀏覽:104
航空工業出版社單片機原理及應用 瀏覽:758
如何在電信app上綁定親情號 瀏覽:376
安卓的怎麼用原相機拍月亮 瀏覽:805
配音秀為什麼顯示伺服器去配音了 瀏覽:755
c盤清理壓縮舊文件 瀏覽:325
app怎麼交付 瀏覽:343
圖蟲app怎麼才能轉到金幣 瀏覽:175
如何做徵文app 瀏覽:446
用什麼app管理斐訊 瀏覽:169
安卓如何下載寶可夢劍盾 瀏覽:166
編譯器開發屬於哪個方向 瀏覽:940
megawin單片機 瀏覽:687