導航:首頁 > 源碼編譯 > 人工智慧回歸分類演算法總結

人工智慧回歸分類演算法總結

發布時間:2022-12-26 19:59:38

❶ 人工智慧常用訓練方法有哪些

有四種方法如下

1、監督式學習。

在監督式學習下,輸入數據被稱為「訓練數據」,每組訓練數據有一個明確的標識或結果,如對防垃圾郵件系統中「垃圾郵件」「非垃圾郵件」,對手寫數字識別中的「1「,」2「,」3「,」4「等。

在建立預測模型的時候,監督式學習建立一個學習過程,將預測結果與「訓練數據」的實際結果進行比較,不斷的調整預測模型,直到模型的預測結果達到一個預期的准確率。

2、強化學習。

在這種學習模式下,輸入數據作為對模型的反饋,不像監督模型那樣,輸入數據僅僅是作為一個檢查模型對錯的方式,在強化學習下,輸入數據直接反饋到模型,模型必須對此立刻作出調整。

3、非監督式學習。

在非監督式學習中,數據並不被特別標識,學習模型是為了推斷出數據的一些內在結構。常見的應用場景包括關聯規則的學習以及聚類等。常見演算法包括Apriori演算法以及k-Means演算法。

4、半監督式學習。

在此學習方式下,輸入數據部分被標識,部分沒有被標識,這種學習模型可以用來進行預測,但是模型首先需要學習數據的內在結構以便合理的組織數據來進行預測。

應用場景包括分類和回歸,演算法包括一些對常用監督式學習演算法的延伸,這些演算法首先試圖對未標識數據進行建模,在此基礎上再對標識的數據進行預測。

❷ 各類場景應用中涉及的AI演算法匯總

整理了各類場景應用中AI演算法

一、圖像CV

內容安全,目標檢測,圖像識別,智能視覺生產,圖像搜索,圖像分割,物體檢測,圖像分類,圖像標簽,名人識別,概念識別,場景識別,物體識別,場景分析,智能相冊,內容推薦,圖庫管理,網紅人物識別,明星人物識別,圖像搜索,商品圖片搜索,版權圖片搜索,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,菜品識別,車型識別,犬類識別,實例分割,風格遷移,智能填充,智能識圖,拍照搜商品,精準廣告投放,電商導購,圖像分析,圖像理解,圖像處理,圖像質量評估,場景識別,物體識別,場所識別,圖像自訓練平台,圖像分類,目標檢測,圖像分割,關鍵點檢測,圖像生成,場景文字識別,度量學習,圖像識別,圖像比對,圖像分類使用手冊,圖像分類API文檔目標檢測使用手冊,目標檢測API文檔Logo檢測使用手冊,Logo檢測API文檔,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,車型識別,犬類識別,實例分割,風格遷移,智能填充,車牌識別,相冊聚類,場景與物體識別,無限天空,圖像識別引擎,黃色圖片識別,暴力圖像識別,工業輪胎智能檢測,肋骨骨折識別,顯微識別,圖像處理,廣告識別,人臉演算法,人體演算法,圖像識別,圖像增強,OCR,圖像處理,ZoomAI,智能貼圖,智能製作,質量評價,圖像識別,智能鑒黃,圖像識別,實時手寫識別,唇語識別,通用文字識別,手寫文字識別,圖像技術,圖像識別,圖像審核,圖像搜索,圖像增強,圖像特效,車輛分析,圖像生成,繪畫機器人獨家,動漫化身獨家,像素風獨家,超清人像獨家,圖像融合,換臉技術,神奇變臉,圖像風格化,證件照生成,線稿圖像識別,寶寶檢測,圖像分類,圉像深度估計,天空分割,食物分割,貓狗臉技術,食物識別獨家,圖像美學評分,車輛分析,車型識別,車型識別(含指導價),車型識別(含配置參數),車標識別,人臉識別(活體),車牌識別,表情識別,安全帽識別,計算機影像,計算機視覺,聚焦光學字元識別、人臉識別、質檢、感知、理解、交互,圖像視頻分析,Logo檢測,內容審核,智能批改,筆記評估,思維導圖評估,物體檢測,物體識別。

二、人臉、體態、眼瞳、聲音、指紋

人臉分割人臉識別,無,人體分析HAS,識別人的年齡,性別,穿著信息,客流統計分析,智能客服,熱點區域分析,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,換臉甄別,人臉支付,人臉核身,人像變換,人臉試妝,人臉融合,人體分析,手勢識別,人臉驗證與檢索,人臉比對,人臉比對sensetime,人臉水印照比對,靜默活體檢測,靜默活體檢測sensetime,人臉檢測和屬性分析,人臉特徵分析tuputech,配合式活體檢測,人臉安防,計算機視覺,智能應用服務,人臉查詢人臉分析人臉統計名單庫管理人臉布控,人臉應用,人體應用,人體查詢,車輛查詢車輛分析車輛統計車輛布控車輛名單庫管理,車輛應用,人臉圖像識別人體圖像識別車輛圖像識別,圖像識別,圖像比對,人臉比對,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,人臉檢測,人臉比對,人臉搜索,人臉關鍵點,稠密關鍵點,人臉屬性,情緒識別,顏值評分,視線估計,皮膚分析,3D人臉重建,面部特徵分析人體識別,人體檢測,人體關鍵點,人體摳像,人體屬性,手勢識別人像處理,美顏美型,人臉融合,濾鏡,聲紋識別支付,語音合成,語音合成,聲紋識別,語音喚醒,人臉識別引擎,攝像頭人臉識別,圖片人臉檢測,身份識別,人臉識別,人臉屬性,人體識別,聲紋識別,衣服檢索及聚類,語音分析,聲紋識別,說話人歸檔,人臉和人體識別,人臉檢測,手勢識別,人臉與人體識別,人臉識別雲服務,人臉識別私有化,人臉離線識別SDK,人臉實名認證,人像特效,人體分析,人臉技不,皮膚分析獨家,頭部分割,宏觀人臉分析,人臉關鍵點檢測,微觀人臉分析獨家,頭發分析獨家,五官分割,頭發分割人體技術,人體外輪廓點檢測獨家,精細化人像摳圖,人體框檢測,肢體關鍵點檢測,人像分割,服飾識別,手勢識別,皮膚分割,人臉,說話人識別,人臉檢測識別,人臉1:1比對,人臉檢測,AI人臉/人形車輛,大數據人像圖片防偽,QoS保障,CDN,表情識別,舉手動作識別,人臉檢測,網路切片,邊緣計算,人臉分析,人臉檢測,人臉搜索,人體分析,手勢識別,著裝檢測,人臉識別,行為檢測,人臉識別,人形檢測,行為分析,人臉檢測,人臉跟蹤,人臉比對,人臉查找,人臉屬性分析,活體檢測,聲音指紋,聲紋識別。

三、視頻

視頻分割、視頻處理、視頻理解、智能視覺、多媒體,視頻內容分析,人體動作監控,視頻分類,智能交通,人/動物軌跡分析,目標計數,目標跟蹤,視頻編輯-,精彩片段提取,新聞視頻拆分,視頻摘要,視頻封面,視頻拆條,視頻標簽-,視頻推薦,視頻搜索,視頻指紋-,數字版權管理,廣告識別,視頻快速審核,視頻版權,視頻查重,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,無,無,視頻,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,菜品識別,視頻識別引擎,結腸息肉檢測,胃鏡評估系統,視頻標簽,場景識別,客流分析,手勢識別,視頻技術,短視頻標簽,視覺看點識別,動態封面圖自動生成,智能剪輯,新聞拆條,智能插幀,視頻技術,多模態媒資檢索公測中,媒體內容分析,媒體內容審核,視頻生成,視頻動作識別,

四、ocr文字識別

手寫識別,票據識別,通用文檔,通用卡證,保險智能理賠,財稅報銷電子化,證照電子化審批,票據類文字識別,行業類文字識別,證件類文字識別,通用類文字識別,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,增值稅發票核驗,營業執照核驗,智能掃碼,行業文檔識別, 汽車 相關識別,票據單據識別,卡證文字識別,通用文字識別,手寫文字識別,印刷文字識別,銀行卡識別,名片識別,身份證識別intsig,營業執照識別intsig,增值稅發票識別intsig,拍照速算識別,公式識別,指尖文字識別,駕駛證識別JD,行駛證識別JD,車牌識別JD,身份證識別,增值稅發票識別,營業執照識別,火車票識別,計程車發票識別,印刷文字識別(多語種),印刷文字識別(多語種)intsig內容審核,色情內容過濾,政治人物檢查,暴恐敏感信息過濾,廣告過濾,OCR自定義模板使用手冊,OCR自定義模板API文檔,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,身份證識別,駕駛證識別,行駛證識別,銀行卡識別,通用文字識別,自定義模板文字識別,文字識別引擎,身份證識別,圖片文字識別,通用文字識別,身份證識別,名片識別,光學字元識別服務,通用文字識別,手寫體文字識別,表格識別,整題識別(含公式),購物小票識別,身份證識別,名片識別,自定義模板文字識別,文字識別,通用文字識別,銀行卡識別,身份證識別,字幕識別,網路圖片識別, 游戲 直播關鍵字識別,新聞標題識別,OCR文字識別,通用場景文字識別,卡證文字識別,財務票據文字識別,醫療票據文字識別, 汽車 場景文字識別,教育場景文字識別,其他場景文字識別,iOCR自定義模板文字識別,通用類OCR,通用文本識別(中英)通用文本識別(多語言)通用表格識別,證照類OCR,身份證社保卡戶口本護照名片銀行卡結婚證離婚證房產證不動產證,車輛相關OCR,行駛證駕駛證車輛合格證車輛登記證,公司商鋪類OCR,商戶小票稅務登記證開戶許可證營業執照組織機構代碼證,票據類OCR,增值稅發票增值稅卷票火車票飛機行程單計程車發票購車發票智能技術,票據機器人證照機器人文本配置機器人表格配置機器人框選配置機器人,文字識別,行駛證識別,駕駛證識別,表單識別器,通用文本,財務票據識別,機構文檔識別,個人證件識別,車輛相關識別,通用表格,印章識別,財報識別,合同比對,識別文字識別,簽名比對,OCR識別,教育OCR,印刷識別,手寫識別,表格識別,公式識別,試卷拆錄

五、自然語言NPL

文本相似度,文本摘要,文本糾錯,中心詞提取,文本信息抽取,智能文本分類,命名實體,詞性標注,多語言分詞,NLP基礎服務,地址標准化,商品評價解析智能簡訊解析,機器閱讀理解,金融研報信息識別,法律案件抽取,行業問答推理,行業知識圖譜構建,文本實體關系抽取,搜索推薦,知識問答,短文本相似度,文本實體抽取, 情感 傾向分析,興趣畫像匹配,文本分類-多標簽,文本分類-單標簽,定製自然語言處理,語言生成,語言理解,自然語言處理基礎,文本摘要,數據轉文字,文本生成,智能問答系統,內容推薦,評價分析,文本分類,對話理解,意圖理解, 情感 分析,觀點抽取,中文分詞,短文本相似度,關鍵詞提取,詞向量,命名實體,識別依存,句法分析, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取,詞法分析, 情感 分析,關鍵詞提取,用戶評論分析,資訊熱點挖掘,AIUI人機交互,文本糾錯,詞法分析,依存句法分析,語義角色標注,語義依存分析(依存樹),語義依存分析(依存圖), 情感 分析,關鍵詞提取,NLP能力生產平台,NLP基礎技術,中文詞法分析-LAC,詞向量—Word2vec,語言模型—Language_model,NLP核心技術, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,信息檢索、新聞推薦、智能客服, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,機器問答、自然語言推斷、 情感 分析和文檔排序,NLP系統應用,問答系統對話系統智能客服,用戶消費習慣理解熱點話題分析輿情監控,自然語言處理,文本分類使用手冊,文本分類API文檔, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取智能創作,智能寫作,搭配短文,種草標題,賣點標題,社交電商營銷文案,自然語言處理能力,基礎文本分析,分詞、詞性分析技術,詞向量表示,依存句法分析,DNN語言模型,語義解析技術,意圖成分識別, 情感 分析,對話情緒識別,文本相似度檢測,文本解析和抽取技術,智能信息抽取,閱讀理解,智能標簽,NLG,自動摘要,自動寫文章,語言處理基礎技術,文本審核, 情感 分析,機器翻譯,智能聊天,自然語言,基於標題的視頻標簽,台詞看點識別,意圖識別,詞法分析,相關詞,輿情分析,流量預測,標簽技術,自然語言處理,語義對話,自然語言處理,車型信息提取,關鍵詞提取,語義理解,語義相似度,意圖解析,中文詞向量,表示依存,句法分析,上下文理解,詞法分析,意圖分析,情緒計算,視覺 情感 ,語音 情感 , 情感 分析,沉浸式閱讀器,語言理解,文本分析,自然語言處理,在線語音識別,自然語言理解火速上線中, 情感 判別,語義角色標注,依存句法分析,詞性標注,實體識別,中文分詞,分詞,

6、知識圖譜

知識圖譜,葯學知識圖譜,智能分診,騰訊知識圖譜,無,葯學知識圖譜,智能分診,知識理解,知識圖譜Schema,圖資料庫BGraph,知識圖譜,語言與知識,語言處理基礎技術,語言處理應用技術,知識理解,文本審核,智能對話定製平台,智能文檔分析平台,智能創作平台,知識圖譜,實體鏈接,意圖圖譜,識別實體,邏輯推理,知識挖掘,知識卡片

7、對話問答機器人

智能問答機器人,智能語音助手,智能對話質檢,智能話務機器人,無,電話機器人,NeuHub助力京東智能客服升級,騰訊雲小微,智能硬體AI語音助手,對話機器人,無,問答系統對話系統智能客服,Replika對話技術,客服機器人,智能問答,智能場景,個性化回復,多輪交互,情緒識別,智能客服,金融虛擬客服,電話質檢,AI語音交互機器人,中移雲客服·智能AI外呼,人機對話精準語義分析

8、翻譯

協同翻譯工具平台,電商內容多語言工具,文檔翻譯,專業版翻譯引擎,通用版翻譯引擎,無,機器翻譯,無,機器翻譯,音視頻字幕平台,機器翻譯,機器翻譯niutrans,文本翻譯,語音翻譯,拍照翻譯,機器翻譯,機器翻譯,文本翻譯,語音翻譯,通用翻譯,自然語言翻譯服務,文本翻譯,圖片翻譯,語音翻譯,實時語音翻譯,文檔翻譯(開發版,機器翻譯,文本翻譯,語音翻譯,拍照翻譯,機器翻譯實時長語音轉寫,錄音文件長語音轉寫,翻譯工具,機器翻譯火速上線中

9、聲音

便攜智能語音一體機,語音合成聲音定製,語音合成,一句話識別,實時語音識別錄音文件識別,客服電話,語音錄入,語音指令,語音對話,語音識別,科學研究,安防監控,聲音分類,語音合成,語音識別,實時語音轉寫,定製語音合成,定製語音識別,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,語音識別,語音合成,聲紋識別,語音識別,語音聽寫,語音轉寫,實時語音轉寫,語音喚醒,離線命令詞識別,離線語音聽寫,語音合成,在線語音合成,離線語音合成,語音分析,語音評測,性別年齡識別,聲紋識別,歌曲識別,A.I.客服平台能力中間件,語音識別,語音交互技術,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,遠場語音識別,語音識別,一句話識別,實時語音識別,錄音文件識別,語音合成,實時語音識別,長語音識別,語音識別,語音合成,波束形成,聲源定位,去混響,降噪,回聲消除,分布式拾音,語音識別,語音喚醒,語音合成,聲紋識別,智能語音服務,語音合成,短語音識別,實時語音識別,語音理解與交互,離線喚醒詞識別,語音識別,一句話識別,實時語音識別,錄音文件識別,電話語音識別,語音喚醒,離線語音識別,離線命令詞識別,遠場語音識別,語音合成,通用語音合成,個性化語音合成,語音技術,短語音識別,實時語音識別,音頻文件轉寫,在線語音合成,離線語音合成,語音自訓練平台,語音交互,語音合成,語音識別,一句話識別,實時短語音識別,語音合成,語音喚醒,本地語音合成,語音翻譯,語音轉文本,短語音聽寫,長語音轉寫,實時語音轉寫,語音內容審核,會議超極本,語音交互技術,語音識別,語義理解,語音合成,音頻轉寫,音視頻類產品,語音通知/驗證碼,訂單小號,撥打驗證,點擊撥號,數據語音,統一認證,語音會議,企業視頻彩鈴,語音識別,語音文件轉錄,實時語音識別,一句話語音識別,語音合成,通用語音合成,個性化語音合成,語音評測,通用語音評測,中英文造句評測,在線語音識別,語音識別,語音喚醒,語音合成,語音合成,語音識別,語音聽寫,語音轉寫,短語音轉寫(同步),語音識別,語音 情感 識別

十、數據挖掘AI硬體

演算法類型:包括二分類、多分類和回歸,精準營銷,表格數據預測,銷量預測,交通流量預測,時序預測,大數據,無,機器學習使用手冊,機器學習API文檔,大數據處理,大數據傳輸,數據工廠,大數據分析,數據倉庫,數據採集與標注,數據採集服務,數據標注服務,AI開發平台,全功能AI開發平台BML,零門檻AI開發平台EasyDL,AI硬體與平台,GPU雲伺服器,機器人平台,度目視頻分析盒子,度目AI鏡頭模組,度目人臉應用套件,度目人臉抓拍機,人臉識別攝像機,昆侖AI加速卡,智能預測,購車指數,數據科學虛擬機,平台效率,雲與AI,抗DDoS,天盾,網站漏洞掃描,網頁防篡改,入侵檢測防護,彈性雲伺服器,對象存儲服務,雲專線(CDA,AI計算機平台—360net深度學習基礎模型,AI演算法訓練適配主流AI框架

十一、其他

內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測,商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,強化學習,智能地圖引擎,內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,個性化與推薦系統,推薦系統,輿情分析,輿情標簽,智慧教育,智能語音評測,拍照搜題,題目識別切分,整頁拍搜批改,作文批改,學業大數據平台,文檔校審系統,會議同傳系統,文檔翻譯系統,視頻翻譯系統,教育學習,口語評測,朗讀聽書,增強現實,3D肢體關鍵點SDK,美顏濾鏡SDK,短視頻SDK,基礎服務,私有雲部署,多模態交互,多模態 情感 分析,多模態意圖解析,多模態融合,多模態語義,內容審查器,Microsoft基因組學,醫學人工智慧開放平台,數據查驗介面,身份驗證(公安簡項),銀行卡驗證,發票查驗,設備接入服務Web/H5直播消息設備託管異常巡檢電話提醒,音視頻,視頻監控服務雲廣播服務雲存儲雲錄制,司乘體驗,智能地圖引擎,消息類產品,視頻簡訊,簡訊通知/驗證碼,企業掛機彩信,來去電身份提示,企業固話彩印,模板閃信,異網簡訊,內容生產,試卷拆錄解決方案,教學管理,教學質量評估解決方案,教學異常行為監測,授課質量分析解決方案,路況識別,人車檢測,視覺SLAM,高精地圖,免費SDK,智能診後隨訪管理,用葯管家,智能預問診,智能導診,智能自診,智能問葯,智能問答,裁判文書近義詞計算,法條推薦,案由預測,

❸ 分類演算法在人工智慧中的應用有哪些

分類屬於人工智慧的一個小功能
分類在現實生活中的應用很多,比如垃圾郵件分類,比如判斷病人的病症
比如猜測明天是否下雨
做任何選擇,都可以從歷史數據之中學習到這種,解決問題的模型

❹ 人工智慧的分類演算法是什麼

人工智慧的分類是兩大類中之一,另一個是預測,分類就是使用模型學習分類模式

❺ 回歸演算法在人工智慧中的應用表現是什麼

您好,你的問題,我之前好像也遇到過,以下是我原來的解決思路和方法,希望能幫助到你,若有錯誤,還望見諒!展開全部
隨著科學技術的發展,人們的生活也發生了很大的變化。近兩年來,人工智慧這一個詞越來越被大家熟知。然而什麼叫做人工智慧,查找相關的知識可以得知,人工智慧就是運用我們學習的一些知識來解決生活中的一些問題。到目前為止,人工智慧已經廣泛的被應用到我們的日常生活中,例如人工智慧已經應用到了交通、醫學以及家居等方面。
一、交通方面
隨著人工智慧技術的發展,人工智慧也深入地應用到了我們日常交通。然而,在現在我們的生活中的日常交通出現的一種叫做智能交通系統,然而所謂的智能交通系統就是一種新管理模式。而這種新管理模式比我們以前的交通運輸管理模式要更先進一些。從科學的角度上看,所謂的智能交通系統就是人類現在利用一些計算機的技術,通過對人們日常生活出行方式進行一些監測之後,再進行計算,最終計算出最佳的一個出行方案,從而保證人類出行安全和暢通。
二、醫學方面
三、家居方面非常感謝您的耐心觀看,如有幫助請採納,祝生活愉快!謝謝!

❻ 人工智慧是學習什麼

1、學習並掌握一些數學知識

高等數學是基礎中的基礎,一切理工科都需要這個打底,數據挖掘、人工智慧、模式識別此類跟數據打交道的又尤其需要多元微積分運算基礎。

線性代數很重要,一般來說線性模型是你最先要考慮的模型,加上很可能要處理多維數據,你需要用線性代數來簡潔清晰的描述問題,為分析求解奠定基礎。

概率論、數理統計、隨機過程更是少不了,涉及數據的問題,不確定性幾乎是不可避免的,引入隨機變數順理成章,相關理論、方法、模型非常豐富。很多機器學習的演算法都是建立在概率論和統計學的基礎上的,比如貝葉斯分類器、高斯隱馬爾可夫鏈。

再就是優化理論與演算法,除非你的問題是像二元一次方程求根那樣有現成的公式,否則你將不得不面對各種看起來無解但是要解的問題,優化將是你的GPS為你指路。

以上這些知識打底,就可以開拔了,針對具體應用再補充相關的知識與理論,比如說一些我覺得有幫助的是數值計算、圖論、拓撲,更理論一點的還有實/復分析、測度論,偏工程類一點的還有信號處理、數據結構。

2、掌握經典機器學習理論和演算法

如果有時間可以為自己建立一個機器學習的知識圖譜,並爭取掌握每一個經典的機器學習理論和演算法,我簡單地總結如下:

1) 回歸演算法:常見的回歸演算法包括最小二乘法(OrdinaryLeast Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應回歸樣條(MultivariateAdaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing);

2) 基於實例的演算法:常見的演算法包括 k-Nearest Neighbor(KNN), 學習矢量量化(Learning Vector Quantization, LVQ),以及自組織映射演算法(Self-Organizing Map , SOM);

3) 基於正則化方法:常見的演算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網路(Elastic Net);

4) 決策樹學習:常見的演算法包括:分類及回歸樹(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機森林(Random Forest), 多元自適應回歸樣條(MARS)以及梯度推進機(Gradient Boosting Machine, GBM);

5) 基於貝葉斯方法:常見演算法包括:樸素貝葉斯演算法,平均單依賴估計(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基於核的演算法:常見的演算法包括支持向量機(SupportVector Machine, SVM), 徑向基函數(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等;

7) 聚類演算法:常見的聚類演算法包括 k-Means演算法以及期望最大化演算法(Expectation Maximization, EM);

8) 基於關聯規則學習:常見演算法包括 Apriori演算法和Eclat演算法等;

9) 人工神經網路:重要的人工神經網路演算法包括:感知器神經網路(PerceptronNeural Network), 反向傳遞(Back Propagation), Hopfield網路,自組織映射(Self-OrganizingMap, SOM)。學習矢量量化(Learning Vector Quantization, LVQ);

10) 深度學習:常見的深度學習演算法包括:受限波爾茲曼機(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網路(Convolutional Network), 堆棧式自動編碼器(Stacked Auto-encoders);

11) 降低維度的演算法:常見的演算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS), 投影追蹤(ProjectionPursuit)等;

12) 集成演算法:常見的演算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進機(GradientBoosting Machine, GBM),隨機森林(Random Forest)。

3、掌握一種編程工具,比如Python
一方面Python是腳本語言,簡便,拿個記事本就能寫,寫完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab雖然包也多,但是效率是這四個裡面最低的。

4、了解行業最新動態和研究成果,比如各大牛的經典論文、博客、讀書筆記、微博微信等媒體資訊。

5、買一個GPU,找一個開源框架,自己多動手訓練深度神經網路,多動手寫寫代碼,多做一些與人工智慧相關的項目。

6、選擇自己感興趣或者工作相關的一個領域深入下去
人工智慧有很多方向,比如NLP、語音識別、計算機視覺等等,生命有限,必須得選一個方向深入的鑽研下去,這樣才能成為人工智慧領域的大牛,有所成就。

根據網路給的定義,人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的還能的理論、方法、技術及應用系統的一門新的技術科學。
網路關於人工智慧的定義詳解中說道:人工智慧是計算機的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀三大尖端技術(基因工程、納米科學、人工智慧)之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
綜上,從定義上講,人工智慧是一項技術。

❼ 人工智慧一些術語總結

隨著智能時代慢慢的到來,有一些基本概念都不知道真的是要落伍了,作為正在積極學習向上的青年,我想總結一份筆記,此份筆記會記錄眾多AI領域的術語和概念,當然,學一部分記錄一部分,並且可能會夾雜著自己的一些理解,由於能力有限,有問題希望大家多多賜教。當然,由於內容太多,僅僅只是記錄了中英名對照,有的加上了簡單的解釋,沒加的後續大家有需求,我會慢慢完善~~。目錄暫定以首字母的字典序排序。可以當作目錄方便以後查閱~~建議收藏加點贊哈哈哈

------------------------------------------------這里是分割線--------------------------------------------------

A

准確率(accuracy)

分類模型預測准確的比例。

二分類問題中,准確率定義為:accuracy = (true positives +true negatives)/all samples

多分類問題中,准確率定義為:accuracy = correctpredictions/all samples

激活函數(activation function)

一種函數,將前一層所有神經元激活值的加權和 輸入到一個非線性函數中,然後作為下一層神經元的輸入,例如 ReLU 或 Sigmoid

AdaGrad

一種復雜的梯度下降演算法,重新調節每個參數的梯度,高效地給每個參數一個單獨的學習率。

AUC(曲線下面積)

一種考慮到所有可能的分類閾值的評估標准。ROC 曲線下面積代表分類器隨機預測真正類(Ture Positives)要比假正類(False Positives)概率大的確信度。

Adversarial example(對抗樣本)

Adversarial Networks(對抗網路)

Artificial General Intelligence/AGI(通用人工智慧)

Attention mechanism(注意力機制)

Autoencoder(自編碼器)

Automatic summarization(自動摘要)

Average gradient(平均梯度)

Average-Pooling(平均池化)

B

反向傳播(Backpropagation/BP)

神經網路中完成梯度下降的重要演算法。首先,在前向傳播的過程中計算每個節點的輸出值。然後,在反向傳播的過程中計算與每個參數對應的誤差的偏導數。

基線(Baseline)

被用為對比模型表現參考的簡單模型。

批量(Batch)

模型訓練中一個迭代(指一次梯度更新)使用的樣本集。

批量大小(Batch size)

一個批量中樣本的數量。例如,SGD 的批量大小為 1,而 mini-batch 的批量大小通常在 10-1000 之間。

偏置(Bias)

與原點的截距或偏移量。

二元分類器(Binary classification)

一類分類任務,輸出兩個互斥類別中的一個。比如垃圾郵件檢測。

詞袋(Bag of words/Bow)

基學習器(Base learner)

基學習演算法(Base learning algorithm)

貝葉斯網路(Bayesian network)

基準(Bechmark)

信念網路(Belief network)

二項分布(Binomial distribution)

玻爾茲曼機(Boltzmann machine)

自助采樣法/可重復采樣/有放回採樣(Bootstrap sampling)

廣播(Broadcasting)

C

類別(Class)

所有同類屬性的目標值作為一個標簽。

分類模型(classification)

機器學習模型的一種,將數據分離為兩個或多個離散類別。

收斂(convergence)

訓練過程達到的某種狀態,其中訓練損失和驗證損失在經過了確定的迭代次數後,在每一次迭代中,改變很小或完全不變。

凸函數(concex function)

一種形狀大致呈字母 U 形或碗形的函數。然而,在退化情形中,凸函數的形狀就像一條線。

成本(cost)

loss 的同義詞。深度學習模型一般都會定義自己的loss函數。

交叉熵(cross-entropy)

多類別分類問題中對 Log 損失函數的推廣。交叉熵量化兩個概率分布之間的區別。

條件熵(Conditional entropy)

條件隨機場(Conditional random field/CRF)

置信度(Confidence)

共軛方向(Conjugate directions)

共軛分布(Conjugate distribution)

共軛梯度(Conjugate gradient)

卷積神經網路(Convolutional neural network/CNN)

餘弦相似度(Cosine similarity)

成本函數(Cost Function)

曲線擬合(Curve-fitting)

D

數據集(data set)

樣本的集合

深度模型(deep model)

一種包含多個隱藏層的神經網路。深度模型依賴於其可訓練的非線性性質。和寬度模型對照(widemodel)。

dropout 正則化(dropoutregularization)

訓練神經網路時一種有用的正則化方法。dropout 正則化的過程是在單次梯度計算中刪去一層網路中隨機選取的固定數量的單元。刪去的單元越多,正則化越強。

數據挖掘(Data mining)

決策樹/判定樹(Decisiontree)

深度神經網路(Deep neural network/DNN)

狄利克雷分布(Dirichlet distribution)

判別模型(Discriminative model)

下采樣(Down sampling)

動態規劃(Dynamic programming)

E

早期停止法(early stopping)

一種正則化方法,在訓練損失完成下降之前停止模型訓練過程。當驗證數據集(validationdata set)的損失開始上升的時候,即泛化表現變差的時候,就該使用早期停止法了。

嵌入(embeddings)

一類表示為連續值特徵的明確的特徵。嵌入通常指將高維向量轉換到低維空間中。

經驗風險最小化(empirical risk minimization,ERM)

選擇能使得訓練數據的損失函數最小化的模型的過程。和結構風險最小化(structualrisk minimization)對照。

集成(ensemble)

多個模型預測的綜合考慮。可以通過以下一種或幾種方法創建一個集成方法:

設置不同的初始化;

設置不同的超參量;

設置不同的總體結構。

深度和廣度模型是一種集成。

樣本(example)

一個數據集的一行內容。一個樣本包含了一個或多個特徵,也可能是一個標簽。參見標注樣本(labeledexample)和無標注樣本(unlabeled example)。

F

假負類(false negative,FN)

被模型錯誤的預測為負類的樣本。例如,模型推斷一封郵件為非垃圾郵件(負類),但實際上這封郵件是垃圾郵件。

假正類(false positive,FP)

被模型錯誤的預測為正類的樣本。例如,模型推斷一封郵件為垃圾郵件(正類),但實際上這封郵件是非垃圾郵件。

假正類率(false positive rate,FP rate)

ROC 曲線(ROC curve)中的 x 軸。FP 率的定義是:假正率=假正類數/(假正類數+真負類數)

特徵工程(feature engineering)

在訓練模型的時候,挖掘對模型效果有利的特徵。

前饋神經網路(Feedforward Neural Networks/FNN )

G

泛化(generalization)

指模型利用新的沒見過的數據而不是用於訓練的數據作出正確的預測的能力。

廣義線性模型(generalized linear model)

最小二乘回歸模型的推廣/泛化,基於高斯雜訊,相對於其它類型的模型(基於其它類型的雜訊,比如泊松雜訊,或類別雜訊)。廣義線性模型的例子包括:

logistic 回歸

多分類回歸

最小二乘回歸

梯度(gradient)

所有變數的偏導數的向量。在機器學習中,梯度是模型函數的偏導數向量。梯度指向最陡峭的上升路線。

梯度截斷(gradient clipping)

在應用梯度之前先修飾數值,梯度截斷有助於確保數值穩定性,防止梯度爆炸出現。

梯度下降(gradient descent)

通過計算模型的相關參量和損失函數的梯度最小化損失函數,值取決於訓練數據。梯度下降迭代地調整參量,逐漸靠近權重和偏置的最佳組合,從而最小化損失函數。

圖(graph)

在 TensorFlow 中的一種計算過程展示。圖中的節點表示操作。節點的連線是有指向性的,表示傳遞一個操作(一個張量)的結果(作為一個操作數)給另一個操作。使用 TensorBoard 能可視化計算圖。

高斯核函數(Gaussian kernel function)

高斯混合模型(Gaussian Mixture Model)

高斯過程(Gaussian Process)

泛化誤差(Generalization error)

生成模型(Generative Model)

遺傳演算法(Genetic Algorithm/GA)

吉布斯采樣(Gibbs sampling)

基尼指數(Gini index)

梯度下降(Gradient Descent)

H

啟發式(heuristic)

一個問題的實際的和非最優的解,但能從學習經驗中獲得足夠多的進步。

隱藏層(hidden layer)

神經網路中位於輸入層(即特徵)和輸出層(即預測)之間的合成層。一個神經網路包含一個或多個隱藏層。

超參數(hyperparameter)

連續訓練模型的過程中可以擰動的「旋鈕」。例如,相對於模型自動更新的參數,學習率(learningrate)是一個超參數。和參量對照。

硬間隔(Hard margin)

隱馬爾可夫模型(Hidden Markov Model/HMM)

層次聚類(Hierarchical clustering)

假設檢驗(Hypothesis test)

I

獨立同分布(independently and identicallydistributed,i.i.d)

從不會改變的分布中獲取的數據,且獲取的每個值不依賴於之前獲取的值。i.i.d. 是機器學習的理想情況——一種有用但在現實世界中幾乎找不到的數學構建。

推斷(inference)

在機器學習中,通常指將訓練模型應用到無標注樣本來進行預測的過程。在統計學中,推斷指在觀察到的數據的基礎上擬合分布參數的過程。

輸入層(input layer)

神經網路的第一層(接收輸入數據)。

評分者間一致性(inter-rater agreement)

用來衡量一項任務中人類評分者意見一致的指標。如果意見不一致,則任務說明可能需要改進。有時也叫標注者間信度(inter-annotator agreement)或評分者間信度(inter-raterreliability)。

增量學習(Incremental learning)

獨立成分分析(Independent Component Analysis/ICA)

獨立子空間分析(Independent subspace analysis)

信息熵(Information entropy)

信息增益(Information gain)

J

JS 散度(Jensen-ShannonDivergence/JSD)

K

Kernel 支持向量機(KernelSupport Vector Machines/KSVM)

一種分類演算法,旨在通過將輸入數據向量映射到更高維度的空間使正類和負類之間的邊際最大化。例如,考慮一個輸入數據集包含一百個特徵的分類問題。為了使正類和負類之間的間隔最大化,KSVM 從內部將特徵映射到百萬維度的空間。KSVM 使用的損失函數叫作 hinge 損失。

核方法(Kernel method)

核技巧(Kernel trick)

k 折交叉驗證/k 倍交叉驗證(K-fold cross validation)

K - 均值聚類(K-MeansClustering)

K近鄰演算法(K-Nearest NeighboursAlgorithm/KNN)

知識圖譜(Knowledge graph)

知識庫(Knowledge base)

知識表徵(Knowledge Representation)

L

L1 損失函數(L1 loss)

損失函數基於模型對標簽的預測值和真實值的差的絕對值而定義。L1 損失函數比起 L2 損失函數對異常值的敏感度更小。

L1 正則化(L1regularization)

一種正則化,按照權重絕對值總和的比例進行懲罰。在依賴稀疏特徵的模型中,L1 正則化幫助促使(幾乎)不相關的特徵的權重趨近於 0,從而從模型中移除這些特徵。

L2 損失(L2 loss)

參見平方損失。

L2 正則化(L2regularization)

一種正則化,按照權重平方的總和的比例進行懲罰。L2 正則化幫助促使異常值權重更接近 0 而不趨近於 0。(可與 L1 正則化對照閱讀。)L2 正則化通常改善線性模型的泛化效果。

標簽(label)

在監督式學習中,樣本的「答案」或「結果」。標注數據集中的每個樣本包含一或多個特徵和一個標簽。在垃圾郵件檢測數據集中,特徵可能包括主題、發出者何郵件本身,而標簽可能是「垃圾郵件」或「非垃圾郵件」。

標注樣本(labeled example)

包含特徵和標簽的樣本。在監督式訓練中,模型從標注樣本中進行學習。

學習率(learning rate)

通過梯度下降訓練模型時使用的一個標量。每次迭代中,梯度下降演算法使學習率乘以梯度,乘積叫作 gradient step。學習率是一個重要的超參數。

最小二乘回歸(least squares regression)

通過 L2 損失最小化進行訓練的線性回歸模型。

線性回歸(linear regression)

對輸入特徵的線性連接輸出連續值的一種回歸模型。

logistic 回歸(logisticregression)

將 sigmoid 函數應用於線性預測,在分類問題中為每個可能的離散標簽值生成概率的模型。盡管 logistic 回歸常用於二元分類問題,但它也用於多類別分類問題(這種情況下,logistic回歸叫作「多類別 logistic 回歸」或「多項式 回歸」。

對數損失函數(Log Loss)

二元 logistic 回歸模型中使用的損失函數。

損失(Loss)

度量模型預測與標簽距離的指標,它是度量一個模型有多糟糕的指標。為了確定損失值,模型必須定義損失函數。例如,線性回歸模型通常使用均方差作為損失函數,而 logistic 回歸模型使用對數損失函數。

隱狄利克雷分布(Latent Dirichlet Allocation/LDA)

潛在語義分析(Latent semantic analysis)

線性判別(Linear Discriminant Analysis/LDA)

長短期記憶(Long-Short Term Memory/LSTM)

M

機器學習(machine learning)

利用輸入數據構建(訓練)預測模型的項目或系統。該系統使用學習的模型對與訓練數據相同分布的新數據進行有用的預測。機器學習還指與這些項目或系統相關的研究領域。

均方誤差(Mean Squared Error/MSE)

每個樣本的平均平方損失。MSE 可以通過平方損失除以樣本數量來計算。

小批量(mini-batch)

在訓練或推斷的一個迭代中運行的整批樣本的一個小的隨機選擇的子集。小批量的大小通常在10 到 1000 之間。在小批量數據上計算損失比在全部訓練數據上計算損失要高效的多。

機器翻譯(Machine translation/MT)

馬爾可夫鏈蒙特卡羅方法(Markov Chain Monte Carlo/MCMC)

馬爾可夫隨機場(Markov Random Field)

多文檔摘要(Multi-document summarization)

多層感知器(Multilayer Perceptron/MLP)

多層前饋神經網路(Multi-layer feedforward neuralnetworks)

N

NaN trap

訓練過程中,如果模型中的一個數字變成了 NaN,則模型中的很多或所有其他數字最終都變成 NaN。NaN 是「Not aNumber」的縮寫。

神經網路(neural network)

該模型從大腦中獲取靈感,由多個層組成(其中至少有一個是隱藏層),每個層包含簡單的連接單元或神經元,其後是非線性。

神經元(neuron)

神經網路中的節點,通常輸入多個值,生成一個輸出值。神經元通過將激活函數(非線性轉換)應用到輸入值的加權和來計算輸出值。

歸一化(normalization)

將值的實際區間轉化為標准區間的過程,標准區間通常是-1 到+1 或 0 到 1。例如,假設某個特徵的自然區間是 800 到 6000。通過減法和分割,你可以把那些值標准化到區間-1 到+1。參見縮放。

Numpy

Python 中提供高效數組運算的開源數學庫。pandas 基於 numpy 構建。

Naive bayes(樸素貝葉斯)

Naive Bayes Classifier(樸素貝葉斯分類器)

Named entity recognition(命名實體識別)

Natural language generation/NLG(自然語言生成)

Natural language processing(自然語言處理)

Norm(范數)

O

目標(objective)

演算法嘗試優化的目標函數。

one-hot 編碼(獨熱編碼)(one-hotencoding)

一個稀疏向量,其中:一個元素設置為 1,所有其他的元素設置為 0。。

一對多(one-vs.-all)

給出一個有 N 個可能解決方案的分類問題,一對多解決方案包括 N 個獨立的二元分類器——每個可能的結果都有一個二元分類器。例如,一個模型將樣本分為動物、蔬菜或礦物,則一對多的解決方案將提供以下三種獨立的二元分類器:

動物和非動物

蔬菜和非蔬菜

礦物和非礦物

過擬合(overfitting)

創建的模型與訓練數據非常匹配,以至於模型無法對新數據進行正確的預測

Oversampling(過采樣)

P

pandas

一種基於列的數據分析 API。很多機器學習框架,包括 TensorFlow,支持 pandas 數據結構作為輸入。參見 pandas 文檔。

參數(parameter)

機器學習系統自行訓練的模型的變數。例如,權重是參數,它的值是機器學習系統通過連續的訓練迭代逐漸學習到的。注意與超參數的區別。

性能(performance)

在軟體工程中的傳統含義:軟體運行速度有多快/高效?

在機器學習中的含義:模型的准確率如何?即,模型的預測結果有多好?

困惑度(perplexity)

對模型完成任務的程度的一種度量指標。例如,假設你的任務是閱讀用戶在智能手機上輸入的單詞的頭幾個字母,並提供可能的完整單詞列表。該任務的困惑度(perplexity,P)是為了列出包含用戶實際想輸入單詞的列表你需要進行的猜測數量。

流程(pipeline)

機器學習演算法的基礎架構。管道包括收集數據、將數據放入訓練數據文件中、訓練一或多個模型,以及最終輸出模型。

Principal component analysis/PCA(主成分分析)

Precision(查准率/准確率)

Prior knowledge(先驗知識)

Q

Quasi Newton method(擬牛頓法)

R

召回率(recall)

回歸模型(regression model)

一種輸出持續值(通常是浮點數)的模型。而分類模型輸出的是離散值。

正則化(regularization)

對模型復雜度的懲罰。正則化幫助防止過擬合。正則化包括不同種類:

L1 正則化

L2 正則化

dropout 正則化

early stopping(這不是正式的正則化方法,但可以高效限制過擬合)

正則化率(regularization rate)

一種標量級,用 lambda 來表示,指正則函數的相對重要性。從下面這個簡化的損失公式可以看出正則化率的作用:

minimize(loss function + λ(regularization function))

提高正則化率能夠降低過擬合,但可能會使模型准確率降低。

表徵(represention)

將數據映射到有用特徵的過程。

受試者工作特徵曲線(receiver operatingcharacteristic/ROC Curve)

反映在不同的分類閾值上,真正類率和假正類率的比值的曲線。參見 AUC。

Recurrent Neural Network(循環神經網路)

Recursive neural network(遞歸神經網路)

Reinforcement learning/RL(強化學習)

Re-sampling(重采樣法)

Representation learning(表徵學習)

Random Forest Algorithm(隨機森林演算法)

S

縮放(scaling)

特徵工程中常用的操作,用於控制特徵值區間,使之與數據集中其他特徵的區間匹配。例如,假設你想使數據集中所有的浮點特徵的區間為 0 到 1。給定一個特徵區間是 0 到 500,那麼你可以通過將每個值除以 500,縮放特徵值區間。還可參見正則化。

scikit-learn

一種流行的開源機器學習平台。網址:www.scikit-learn.org。

序列模型(sequence model)

輸入具有序列依賴性的模型。例如,根據之前觀看過的視頻序列對下一個視頻進行預測。

Sigmoid 函數(sigmoid function)

softmax

為多類別分類模型中每個可能的類提供概率的函數。概率加起來的總和是 1.0。例如,softmax 可能檢測到某個圖像是一隻狗的概率為 0.9,是一隻貓的概率為 0.08,是一匹馬的概率為 0.02。(也叫作 full softmax)。

結構風險最小化(structural risk minimization/SRM)

這種演算法平衡兩個目標:

構建預測性最強的模型(如最低損失)。

使模型盡量保持簡單(如強正則化)。

比如,在訓練集上的損失最小化 + 正則化的模型函數就是結構風險最小化演算法。更多信息,參見 http://www.svms.org/srm/。可與經驗風險最小化對照閱讀。

監督式機器學習(supervised machine learning)

利用輸入數據及其對應標簽來訓練模型。監督式機器學習類似學生通過研究問題和對應答案進行學習。在掌握問題和答案之間的映射之後,學生就可以提供同樣主題的新問題的答案了。可與非監督機器學習對照閱讀。

Similarity measure(相似度度量)

Singular Value Decomposition(奇異值分解)

Soft margin(軟間隔)

Soft margin maximization(軟間隔最大化)

Support Vector Machine/SVM(支持向量機)

T

張量(tensor)

TensorFlow 項目的主要數據結構。張量是 N 維數據結構(N 的值很大),經常是標量、向量或矩陣。張量可以包括整數、浮點或字元串值。

Transfer learning(遷移學習)

U

無標簽樣本(unlabeled example)

包含特徵但沒有標簽的樣本。無標簽樣本是推斷的輸入。在半監督學習和無監督學習的訓練過程中,通常使用無標簽樣本。

無監督機器學習(unsupervised machine learning)

訓練一個模型尋找數據集(通常是無標簽數據集)中的模式。無監督機器學習最常用於將數據分成幾組類似的樣本。無監督機器學習的另一個例子是主成分分析(principal componentanalysis,PCA)

W

Word embedding(詞嵌入)

Word sense disambiguation(詞義消歧)

❽ 人工智慧演算法有哪些

人工智慧演算法有:決策樹、隨機森林演算法、邏輯回歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾可夫。

❾ 人工智慧演算法簡介

人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?

一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。

常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。

常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。

常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。

常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。

常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。

二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。

解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。

回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。

聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。

常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。

演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————

原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769

閱讀全文

與人工智慧回歸分類演算法總結相關的資料

熱點內容
紅塔銀行app怎麼樣 瀏覽:562
農行app怎麼開網銀 瀏覽:649
java迭代器遍歷 瀏覽:301
閩政通無法請求伺服器是什麼 瀏覽:48
怎麼做積木解壓神器 瀏覽:203
王者榮耀解壓玩具抽獎 瀏覽:49
12位是由啥加密的 瀏覽:868
程序員編迷你世界代碼 瀏覽:895
php取現在時間 瀏覽:246
單片機高吸收 瀏覽:427
怎麼區分五代頭是不是加密噴頭 瀏覽:244
hunt測試伺服器是什麼意思 瀏覽:510
2013程序員考試 瀏覽:641
畢業論文是pdf 瀏覽:736
伺服器跑網心雲劃算嗎 瀏覽:471
單片機定時器計數初值的計算公式 瀏覽:801
win7控制台命令 瀏覽:567
貓咪成年app怎麼升級 瀏覽:692
360有沒有加密軟體 瀏覽:315
清除cisco交換機配置命令 瀏覽:751