① 分治演算法——漢諾塔問題
一、分治演算法概念
「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題,直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。
這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換) 。
任何一個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
二、分治法的設計思想
將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
三、分治策略
對於一個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞歸地解這些子問題,然後將各子問題的解合並得到原問題的解。這種演算法設計策略叫做分治法。
四、分治法實現步驟
①分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;②解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;③合並:將各個子問題的解合並為原問題的解。
它的一般的演算法設計模式如下: Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 將P分解為較小的子問題 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) 遞歸解決Pi 6. T ← MERGE(y1,y2,…,yk) 合並子問題 7. return(T)
五、可使用分治法求解的一些經典問題 (1)二分搜索
(2)大整數乘法
(3)Strassen矩陣乘法
(4)棋盤覆蓋
(5)合並排序
(6)快速排序
(7)線性時間選擇
(8)最接近點對問題
(9)循環賽日程表
(10)漢諾塔
② 分治演算法幾個經典例子
分治法,字面意思是「分而治之」,就是把一個復雜的1問題分成兩個或多個相同或相似的子問題,再把子問題分成更小的子問題直到最後子問題可以簡單地直接求解,原問題的解即子問題的解的合並,這個思想是很多高效演算法的基礎。
圖二
大整數乘法
Strassen矩陣乘法
棋盤覆蓋
合並排序
快速排序
線性時間選擇
最接近點對問題
循環賽日程表
漢諾塔
③ Android 演算法之排序演算法(快速排序)
快速排序(Quick Sort)的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體演算法描述如下:
④ 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
⑤ 快速排序特點
快速排序(Quicksort)是對冒泡排序的一種改進,由東尼·霍爾在1960年提出。 快速排序是指通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序。整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
分類
排序演算法
數據結構
不定
最壞空間復雜度
根據實現的方式不同而不同
快速排序使用分治法(Divide and conquer)策略來把一個序列(list)分為兩個子序列(sub-lists)。
步驟為:
從數列中挑出一個元素,稱為「基準」(pivot),
重新排序數列,所有比基準值小的元素擺放在基準前面,所有比基準值大的元素擺在基準後面(相同的數可以到任何一邊)。在這個分區結束之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
遞歸地(recursively)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸到最底部時,數列的大小是零或一,也就是已經排序好了。這個演算法一定會結束,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
在簡單的偽代碼中,此演算法可以被表示為:
function quicksort(q)
{
var list less, pivotList, greater
if length(q) ≤ 1
return q
else
{
select a pivot value pivot from q
for each x in q except the pivot element
{
if x<pivot then add x to less
if x ≥ pivot then add x to greater
}
add pivot to pivotList
return concatenate(quicksort(less), pivotList, quicksort(greater))
}
}
原地(in-place)分區的版本
上面簡單版本的缺點是,它需要的額外存儲空間,也就跟歸並排序一樣不好。額外需要的存儲器空間配置,在實際上的實現,也會極度影響速度和緩存的性能。有一個比較復雜使用原地(in-place)分區演算法的版本,且在好的基準選擇上,平均可以達到空間的使用復雜度。
function partition(a, left, right, pivotIndex)
{
pivotValue = a[pivotIndex]
swap(a[pivotIndex], a[right]) // 把pivot移到結尾
storeIndex = left
for i from left to right-1
{
if a[i]<= pivotValue
{
swap(a[storeIndex], a[i])
storeIndex = storeIndex + 1
}
}
swap(a[right], a[storeIndex]) // 把pivot移到它最後的地方
return storeIndex
}
這是原地分區演算法,它分區了標示為"左邊(left)"和"右邊(right)"的序列部分,藉由移動小於的所有元素到子序列的開頭,留下所有大於或等於的元素接在他們後面。在這個過程它也為基準元素找尋最後擺放的位置,也就是它回傳的值。它暫時地把基準元素移到子序列的結尾,而不會被前述方式影響到。由於演算法只使用交換,因此最後的數列與原先的數列擁有一樣的元素。要注意的是,一個元素在到達它的最後位置前,可能會被交換很多次。
一旦我們有了這個分區演算法,要寫快速排列本身就很容易:
procere quicksort(a, left, right)
if right>left
select a pivot value a[pivotIndex]
pivotNewIndex := partition(a, left, right, pivotIndex)
quicksort(a, left, pivotNewIndex-1)
quicksort(a, pivotNewIndex+1, right)
這個版本經常會被使用在命令式語言中,像是C語言。
快速排序
快速排序是二叉查找樹(二叉搜索樹)的一個空間最優化版本。不是循序地把數據項插入到一個明確的樹中,而是由快速排序組織這些數據項到一個由遞歸調用所隱含的樹中。這兩個演算法完全地產生相同的比較次數,但是順序不同。對於排序演算法的穩定性指標,原地分區版本的快速排序演算法是不穩定的。其他變種是可以通過犧牲性能和空間來維護穩定性的。
⑥ 什麼是分治演算法
分治法就是將一個復雜的問題分成多個相對簡單的獨立問題進行求解,並且綜合所有簡單問題的解可以組成這個復雜問題的解。
例如快速排序演算法就是一個分治法的例子。即將一個大的無序序列排序成有序序列,等於將兩個無序的子序列排序成有序,且兩個子序列之間滿足一個序列的元素普遍大於另一個序列中的元素。
⑦ 快速排序法的平均時間復雜度和最壞時間復雜度分別是多少
快速排序的平均時間復雜度和最壞時間復雜度分別是O(nlgn)、O(n^2)。
當排序已經成為基本有序狀態時,快速排序退化為O(n^2),一般情況下,排序為指數復雜度。
快速排序最差情況遞歸調用棧高度O(n),平均情況遞歸調用棧高度O(logn),而不管哪種情況棧的每一層處理時間都是O(n),所以,平均情況(最佳情況也是平均情況)的時間復雜度O(nlogn),最差情況的時間復雜度為O(n^2)。
(7)分治演算法快速排序擴展閱讀
快速排序是C.R.A.Hoare於1962年提出的一種劃分交換排序,它採用了一種分治的策略,通常稱其為分治法。快速排序演算法通過多次比較和交換來實現排序,其排序流程如下:
(1)首先設定一個分界值,通過該分界值將數組分成左右兩部分。
(2)將大於或等於分界值的數據集中到數組右邊,小於分界值的數據集中到數組的左邊。此時,左邊部分中各元素都小於或等於分界值,而右邊部分中各元素都大於或等於分界值。
(3)然後,左邊和右邊的數據可以獨立排序。對於左側的數組數據,又可以取一個分界值,將該部分數據分成左右兩部分,同樣在左邊放置較小值,右邊放置較大值。右側的數組數據也可以做類似處理。
(4)重復上述過程,可以看出,這是一個遞歸定義。通過遞歸將左側部分排好序後,再遞歸排好右側部分的順序。當左、右兩個部分各數據排序完成後,整個數組的排序也就完成了。
⑧ C++演算法分治法實現快速排序改錯。
你思路是錯的
快排的每一部分 是將待排序的序列中隨便挑一個 比他小的放到左邊 大的放到右邊 自己放在中間
然後遞歸解決左邊那串序列和右邊那串
怎麼可能剛好左邊那串和右邊那串長度都是原來的一半呢?
⑨ 快速排序是原地排序么
快速排序是原地排序。
快速排序是一種原地排序,只需要一個很小的棧作為輔助空間,空間復雜度為O(logN),所以適合在數據集比較大且無序的時候使用。實現方法有經典快排和雙指針快排。
快速排序也是一種分治的排序演算法。它將一個數組分成兩個子數組,將兩部分獨立地排序。
快速排序和歸並排序是互補:
歸並排序是將數組分成兩個子數組分別排序,並將有序數組歸並,這樣數組就是有序的了;而快速排序將數組通過切分變成部分有序數組,然後拆成成兩個子數組,當兩個子數組都有序時整個數組也就有序了。
歸並排序的遞歸調用發生在處理數組之前,快速排序的遞歸調用是發生在處理數組之後。
⑩ 快速排序演算法原理與實現
快速排序的基本思想就是從一個數組中任意挑選一個元素(通常來說會選擇最左邊的元素)作為中軸元素,將剩下的元素以中軸元素作為比較的標准,將小於等於中軸元素的放到中軸元素的左邊,將大於中軸元素的放到中軸元素的右邊。
然後以當前中軸元素的位置為界,將左半部分子數組和右半部分子數組看成兩個新的數組,重復上述操作,直到子數組的元素個數小於等於1(因為一個元素的數組必定是有序的)。
以下的代碼中會常常使用交換數組中兩個元素值的Swap方法,其代碼如下
publicstaticvoidSwap(int[] A, inti, intj){
inttmp;
tmp = A[i];
A[i] = A[j];
A[j] = tmp;
(10)分治演算法快速排序擴展閱讀:
快速排序演算法 的基本思想是:將所要進行排序的數分為左右兩個部分,其中一部分的所有數據都比另外一 部分的數據小,然後將所分得的兩部分數據進行同樣的劃分,重復執行以上的劃分操作,直 到所有要進行排序的數據變為有序為止。
定義兩個變數low和high,將low、high分別設置為要進行排序的序列的起始元素和最後一個元素的下標。第一次,low和high的取值分別為0和n-1,接下來的每次取值由劃分得到的序列起始元素和最後一個元素的下標來決定。
定義一個變數key,接下來以key的取值為基準將數組A劃分為左右兩個部分,通 常,key值為要進行排序序列的第一個元素值。第一次的取值為A[0],以後毎次取值由要劃 分序列的起始元素決定。
從high所指向的數組元素開始向左掃描,掃描的同時將下標為high的數組元素依次與劃分基準值key進行比較操作,直到high不大於low或找到第一個小於基準值key的數組元素,然後將該值賦值給low所指向的數組元素,同時將low右移一個位置。
如果low依然小於high,那麼由low所指向的數組元素開始向右掃描,掃描的同時將下標為low的數組元素值依次與劃分的基準值key進行比較操作,直到low不小於high或找到第一個大於基準值key的數組元素,然後將該值賦給high所指向的數組元素,同時將high左移一個位置。
重復步驟(3) (4),直到low的植不小於high為止,這時成功劃分後得到的左右兩部分分別為A[low……pos-1]和A[pos+1……high],其中,pos下標所對應的數組元素的值就是進行劃分的基準值key,所以在劃分結束時還要將下標為pos的數組元素賦值 為 key。