Ⅰ 平方根怎麼算
步驟:
1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數;
2、根據左邊第一段里的數,求得平方根的最高位上的數;
3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數;
4、把求得的最高位數乘以2去試除第一個余數,所得的最大整數作為試商;
5、用商的最高位數的2倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試。
註:一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
負數在實數系內不能開平方。只有在復數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。
例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。
例如,A=5,,即求
5介於1的3次方;至2的3次方;之間(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我們取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位數值,,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位數,比前面多取一位數。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
這種方法可以自動調節,第一步與第三步取值偏大,但是計算出來以後輸出值會自動轉小;第二步,第四步輸入值
偏小,輸出值自動轉大。即5=1.7099^3;
當然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一個,都是X1 = 1.7 > 。當然,我們在實際中初始值最好採用中間值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。
Ⅱ 求一個數的平方根怎麼算
開方的計算步驟:
1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;
2、根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4、把求得的最高位數乘以2去試除第一個余數,所得的最大整數作為試商(2×30除256,所得的最大整數是 4,即試商是4);
5、用商的最高位數的2倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(2×30+4)×4=256,說明試商4就是平方根的第二位數);
6、用同樣的方法,繼續求平方根的其他各位上的數.
對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。實際中這種演算法也是計算機用於開方的演算法。
Ⅲ 求平方根的演算法公式 謝謝
一、求11~19 的平方
底數的個位與底數相加,得數為前積,底數的個位乘以個位相乘,得數為後積,滿十前一。
例:17 × 17
17 + 7 = 24-
7 × 7 = 49
---------------
289
參閱乘法速算中的「十位是1 的兩位相乘」
二、個位是1 的兩位數的平方
底數的十位乘以十位(即十位的平方),得為前積,底數的十位加十位(即十位乘以2),得數為後積,在個位加1。
例:71 × 71
7 × 7 = 49--
7 × 2 = 14-
1
-----------------
5041
參閱乘法速算中的「個位數是1的兩位數相乘」
三、個位是5 的兩位數的平方
十位加1 乘以十位,在得數的後面接上25。
例:35 × 35
(3 + 1)× 3 = 12--
25
----------------------
1225
四、21~50 的兩位數的平方
在這個范圍內有四個數字是個關鍵,在求25~50之間的兩數的平方時,若把它們記住了,就可以很省事了。它們是:
21 × 21 = 441
22 × 22 = 484
23 × 23 = 529
24 × 24 = 576
求25~50 的兩位數的平方,用底數減去25,得數為前積,50減去底數所得的差的平方作為後積,滿百進1,沒有十位補0。
例:37 × 37
37 - 25 = 12--
(50 - 37)^2 = 169
----------------------
1369
注意:底數減去25後,要記住在得數的後面留兩個位置給十位和個位。
例:26 × 26
26 - 25 = 1--
(50-26)^2 = 576
-------------------
676