❶ 貪心演算法的例題分析
例題1、
[0-1背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
價值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目標函數:∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M(M=150)
⑴根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
⑵每次挑選所佔重量最小的物品裝入是否能得到最優解?
⑶每次選取單位重量價值最大的物品,成為解本題的策略。
值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
⑴貪心策略:選取價值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
價值:30 20 20
根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。
⑵貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。
⑶貪心策略:選取單位重量價值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
價值:28 20 10
根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。
【注意:如果物品可以分割為任意大小,那麼策略3可得最優解】
對於選取單位重量價值最大的物品這個策略,可以再加一條優化的規則:對於單位重量價值一樣的,則優先選擇重量小的!這樣,上面的反例就解決了。
但是,如果題目是如下所示,這個策略就也不行了。
W=40
物品:A B C
重量:25 20 15
價值:25 20 15
附:本題是個DP問題,用貪心法並不一定可以求得最優解,以後了解了動態規劃演算法後本題就有了新的解法。
例題2、
馬踏棋盤的貪心演算法
123041-23 XX
【問題描述】
馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條路徑。
【初步設計】
首先這是一個搜索問題,運用深度優先搜索進行求解。演算法如下:
⒈ 輸入初始位置坐標x,y;
⒉ 步驟 c:
如果c> 64輸出一個解,返回上一步驟c--
(x,y) ← c
計算(x,y)的八個方位的子結點,選出那些可行的子結點
循環遍歷所有可行子結點,步驟c++重復2
顯然⑵是一個遞歸調用的過程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//輸出一個解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八個方位子結點ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//遞歸調用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8個方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{確定新坐標是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判斷是否走過}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐標}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{遞歸}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{讀入開始坐標}Readln(x1,y1);{讀入結束坐標}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判斷是否越界}ElseFind(x,y);Writeln('Total:',total){打出總數}END.這樣做是完全可行的,它輸入的是全部解,但是馬遍歷當8×8時解是非常之多的,用天文數字形容也不為過,這樣一來求解的過程就非常慢,並且出一個解也非常慢。
怎麼才能快速地得到部分解呢?
【貪心演算法】
其實馬踏棋盤的問題很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一個有名的演算法。在每個結點對其子結點進行選取時,優先選擇『出口』最小的進行搜索,『出口』的意思是在這些子結點中它們的可行子結點的個數,也就是『孫子』結點越少的越優先跳,為什麼要這樣選取,這是一種局部調整最優的做法,如果優先選擇出口多的子結點,那出口少的子結點就會越來越多,很可能出現『死』結點(顧名思義就是沒有出口又沒有跳過的結點),這樣對下面的搜索純粹是徒勞,這樣會浪費很多無用的時間,反過來如果每次都優先選擇出口少的結點跳,那出口少的結點就會越來越少,這樣跳成功的機會就更大一些。這種演算法稱為為貪心演算法,也叫貪婪演算法或啟發式演算法,它對整個求解過程的局部做最優調整,它只適用於求較優解或者部分解,而不能求最優解。這樣的調整方法叫貪心策略,至於什麼問題需要什麼樣的貪心策略是不確定的,具體問題具體分析。實驗可以證明馬遍歷問題在運用到了上面的貪心策略之後求解速率有非常明顯的提高,如果只要求出一個解甚至不用回溯就可以完成,因為在這個演算法提出的時候世界上還沒有計算機,這種方法完全可以用手工求出解來,其效率可想而知。
❷ 貪心演算法之會場安排問題
三星演算法之間最好還是不要安排互相的問題,這樣不利於你們倆的關系的便有好。
❸ 貪心演算法(硬幣找零問題)
小Q手上有 n 種不同面值的硬幣,每種硬幣有無限多個。為了方便購物,他希望帶盡量 少的硬幣,但是要能組合出 1 到 m 之間的任意值。輸入的第一行為兩個整數: m 和 n ,他們的意義如題目描述。 接下來的 n 行,每行一個整數,第 i+1 行的整數表示第 i 種硬幣的面值。輸出的最少需要攜帶的硬幣數量,如果無解則輸出 -1 。
50% 的數據: 1<=n<=10 , 1<=m<=10^3 ;
100% 的數據: 1<=n<=100 , 1<=m<=10^9 ;
數據量很大,dp不好做,也不好壓縮,應該採用貪心的思路。首先如果沒有面值為 1 的硬幣必定無法滿足要求可以直接輸出 -1 ,接下來考慮貪心策略,設想如果能夠組合出 1 到 5 之間的任何數值,只要一個 6 的硬幣就能組合出 1 到 11 的任意值,既如果當前能夠組合出 1 到 n 的硬幣,再加入一個 n+1 面值的銀幣就能組合出 1 到 n+n+1 的所有面值。所以基本思路就是用一個變數 cur 存儲當前能表示的面值,將硬幣排序,從大往小找到第一個小於等於 cur+1 的硬幣,硬幣數加一同時更新 cur ,當 cur 大於 m 時輸出。
❹ 計算題【用貪心演算法求解付款問題】
不是
貪心得到的結果是 3元,1元,5角,1角
最優是一張三元,兩張八角。
❺ 程序員演算法基礎——貪心演算法
貪心是人類自帶的能力,貪心演算法是在貪心決策上進行統籌規劃的統稱。
比如一道常見的演算法筆試題---- 跳一跳 :
我們自然而然能產生一種解法:盡可能的往右跳,看最後是否能到達。
本文即是對這種貪心決策的介紹。
狹義的貪心演算法指的是解最優化問題的一種特殊方法,解決過程中總是做出當下最好的選擇,因為具有最優子結構的特點,局部最優解可以得到全局最優解;這種貪心演算法是動態規劃的一種特例。 能用貪心解決的問題,也可以用動態規劃解決。
而廣義的貪心指的是一種通用的貪心策略,基於當前局面而進行貪心決策。以 跳一跳 的題目為例:
我們發現的題目的核心在於 向右能到達的最遠距離 ,我們用maxRight來表示;
此時有一種貪心的策略:從第1個盒子開始向右遍歷,對於每個經過的盒子,不斷更新maxRight的值。
貪心的思考過程類似動態規劃,依舊是兩步: 大事化小 , 小事化了 。
大事化小:
一個較大的問題,通過找到與子問題的重疊,把復雜的問題劃分為多個小問題;
小事化了:
從小問題找到決策的核心,確定一種得到最優解的策略,比如跳一跳中的 向右能到達的最遠距離 ;
在證明局部的最優解是否可以推出全局最優解的時候,常會用到數學的證明方式。
如果是動態規劃:
要湊出m元,必須先湊出m-1、m-2、m-5、m-10元,我們用dp[i]表示湊出i元的最少紙幣數;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根據以上遞推方程和初始化信息,可以容易推出dp[1~m]的所有值。
似乎有些不對? 平時我們找零錢有這么復雜嗎?
從貪心演算法角度出發,當m>10且我們有10元紙幣,我們優先使用10元紙幣,然後再是5元、2元、1元紙幣。
從日常生活的經驗知道,這么做是正確的,但是為什麼?
假如我們把題目變成這樣,原來的策略還能生效嗎?
接下來我們來分析這種策略:
已知對於m元紙幣,1,2,5元紙幣使用了a,b,c張,我們有a+2b+5c=m;
假設存在一種情況,1、2、5元紙幣使用數是x,y,z張,使用了更少的5元紙幣(z<c),且紙幣張數更少(x+y+z<a+b+c),即是用更少5元紙幣得到最優解。
我們令k=5*(c-z),k元紙幣需要floor(k/2)張2元紙幣,k%2張1元紙幣;(因為如果有2張1元紙幣,可以使用1張2元紙幣來替代,故而1元紙幣只能是0張或者1張)
容易知道,減少(c-z)張5元紙幣,需要增加floor(5*(c-z)/2)張2元紙幣和(5*(c-z))%2張紙幣,而這使得x+y+z必然大於a+b+c。
由此我們知道不可能存在使用更少5元紙幣的更優解。
所以優先使用大額紙幣是一種正確的貪心選擇。
對於1、5、7元紙幣,比如說要湊出10元,如果優先使用7元紙幣,則張數是4;(1+1+1+7)
但如果只使用5元紙幣,則張數是2;(5+5)
在這種情況下,優先使用大額紙幣是不正確的貪心選擇。(但用動態規劃仍能得到最優解)
如果是動態規劃:
前i秒的完成的任務數,可以由前面1~i-1秒的任務完成數推過來。
我們用 dp[i]表示前i秒能完成的任務數 ;
在計算前i秒能完成的任務數時,對於第j個任務,我們有兩種決策:
1、不執行這個任務,那麼dp[i]沒有變化;
2、執行這個任務,那麼必須騰出來(Sj, Tj)這段時間,那麼 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如說對於任務j如果是第5秒開始第10秒結束,如果i>=10,那麼有 dp[i]=max(dp[i], dp[5] + 1); (相當於把第5秒到第i秒的時間分配給任務j)
再考慮貪心的策略,現實生活中人們是如何安排這種多任務的事情?我換一種描述方式:
我們自然而然會想到一個策略: 先把結束時間早的兼職給做了!
為什麼?
因為先做完這個結束時間早的,能留出更多的時間做其他兼職。
我們天生具備了這種優化決策的能力。
這是一道 LeetCode題目 。
這個題目不能直接用動態規劃去解,比如用dp[i]表示前i個人需要的最少糖果數。
因為(前i個人的最少糖果數)這種狀態表示會收到第i+1個人的影響,如果a[i]>a[i+1],那麼第i個人應該比第i+1個人多。
即是 這種狀態表示不具備無後效性。
如果是我們分配糖果,我們應該怎麼分配?
答案是: 從分數最低的開始。
按照分數排序,從最低開始分,每次判斷是否比左右的分數高。
假設每個人分c[i]個糖果,那麼對於第i個人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默認為0,如果在計算i的時候,c[i-1]為0,表示i-1的分數比i高)
但是,這樣解決的時間復雜度為 O(NLogN) ,主要瓶頸是在排序。
如果提交,會得到 Time Limit Exceeded 的提示。
我們需要對貪心的策略進行優化:
我們把左右兩種情況分開看。
如果只考慮比左邊的人分數高時,容易得到策略:
從左到右遍歷,如果a[i]>a[i-1],則有c[i]=c[i-1]+1;否則c[i]=1。
再考慮比右邊的人分數高時,此時我們要從數組的最右邊,向左開始遍歷:
如果a[i]>a[i+1], 則有c[i]=c[i+1]+1;否則c[i]不變;
這樣講過兩次遍歷,我們可以得到一個分配方案,並且時間復雜度是 O(N) 。
題目給出關鍵信息:1、兩個人過河,耗時為較長的時間;
還有隱藏的信息:2、兩個人過河後,需要有一個人把船開回去;
要保證總時間盡可能小,這里有兩個關鍵原則: 應該使得兩個人時間差盡可能小(減少浪費),同時船回去的時間也盡可能小(減少等待)。
先不考慮空船回來的情況,如果有無限多的船,那麼應該怎麼分配?
答案: 每次從剩下的人選擇耗時最長的人,再選擇與他耗時最接近的人。
再考慮只有一條船的情況,假設有A/B/C三個人,並且耗時A<B<C。
那麼最快的方案是:A+B去, A回;A+C去;總耗時是A+B+C。(因為A是最快的,讓其他人來回時間只會更長, 減少等待的原則 )
如果有A/B/C/D四個人,且耗時A<B<C<D,這時有兩種方案:
1、最快的來回送人方式,A+B去;A回;A+C去,A回;A+D去; 總耗時是B+C+D+2A (減少等待原則)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;總耗時是 3B+D+A (減少浪費原則)
對比方案1、2的選擇,我們發現差別僅在A+C和2B;
為何方案1、2差別里沒有D?
因為D最終一定要過河,且耗時一定為D。
如果有A/B/C/D/E 5個人,且耗時A<B<C<D<E,這時如何抉擇?
仍是從最慢的E看。(參考我們無限多船的情況)
方案1,減少等待;先送E過去,然後接著考慮四個人的情況;
方案2,減少浪費;先送E/D過去,然後接著考慮A/B/C三個人的情況;(4人的時候的方案2)
到5個人的時候,我們已經明顯發了一個特點:問題是重復,且可以由子問題去解決。
根據5個人的情況,我們可以推出狀態轉移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根據我們考慮的1、2、3、4個人的情況,我們分別可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);
由上述的狀態轉移方程和初始化值,我們可以推出dp[n]的值。
貪心的學習過程,就是對自己的思考進行優化。
是把握已有信息,進行最優化決策。
這里還有一些收集的 貪心練習題 ,可以實踐練習。
這里 還有在線分享,歡迎報名。
❻ 貪心演算法幾個經典例子
[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。
貪心演算法是很常見的演算法之一,這是由於它簡單易行,構造貪心策略簡單。但是,它需要證明後才能真正運用到題目的演算法中。一般來說,貪心演算法的證明圍繞著整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於本例題中的3種貪心策略,都無法成立,即無法被證明。
❼ 求貪心演算法題(Pascal)
《編程之美》裡面有一道買書問題的貪心演算法。
題目是這樣的:
在節假日的時候,書店一般都會做促銷活動。由於《哈利波特》系列相當暢銷,店長決定通過促銷活動來回饋讀者。上櫃的《哈利波特》平裝本系列中,一共有五卷。假設每一卷單獨銷售均需8歐元 。如果讀者一次購買不同的兩卷,就可以扣除5%的費用,三卷則更多。假設具體折扣的情況如下:
本數 折扣
2 5%
3 10%
4 20%
5 25%
在一份訂單中,根據購買的卷數及本數,就會出現可以應用不同折扣規則的情況。但是,一本書只會應用一個折扣規則。比如,讀者一共買了兩本卷一,一本卷二。那麼,可以享受到5%的折扣。另外一本卷一則不能享受折扣。如果有多種折扣,希望計算出的總額盡可能的低。
要求根據以上需求,設計出演算法,能夠計算出讀者所購買一批書的最低價格。
❽ 關於編程的貪心法
定義
所謂貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。 貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣泛的許多問題他能產生整體最優解或者是整體最優解的近似解。
[編輯本段]貪心演算法的基本思路
1.建立數學模型來描述問題。 2.把求解的問題分成若干個子問題。 3.對每一子問題求解,得到子問題的局部最優解。 4.把子問題的解局部最優解合成原來解問題的一個解。 實現該演算法的過程: 從問題的某一初始解出發; while 能朝給定總目標前進一步 do 求出可行解的一個解元素; 由所有解元素組合成問題的一個可行解。 下面是一個可以試用貪心演算法解的題目,貪心解的確不錯,可惜不是最優解。
[編輯本段]例題分析
[背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。 要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。 物品 A B C D E F G 重量 35 30 60 50 40 10 25 價值 10 40 30 50 35 40 30 分析: 目標函數: ∑pi最大 約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150) (1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優? (2)每次挑選所佔重量最小的物品裝入是否能得到最優解? (3)每次選取單位重量價值最大的物品,成為解本題的策略。 值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。 貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。 可惜的是,它需要證明後才能真正運用到題目的演算法中。 一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。 對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下: (1)貪心策略:選取價值最大者。 反例: W=30 物品:A B C 重量:28 12 12 價值:30 20 20 根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。 (2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。 (3)貪心策略:選取單位重量價值最大的物品。 反例: W=30 物品:A B C 重量:28 20 10 價值:28 20 10 根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。 【注意:如果物品可以分割為任意大小,那麼策略3可得最優解】 對於選取單位重量價值最大的物品這個策略,可以再加一條優化的規則:對於單位重量價值一樣的,則優先選擇重量小的!這樣,上面的反例就解決了。 但是,如果題目是如下所示,這個策略就也不行了。 W=40 物品:A B C 重量:28 20 15 價值:28 20 15 附:本題是個NP問題,用貪心法並不一定可以求得最優解,以後了解了動態規劃演算法後本題就有了新的解法。
[編輯本段]備注
貪心演算法當然也有正確的時候。求最小生成樹的Prim演算法和Kruskal演算法都是漂亮的貪心演算法。 所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的對象是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的幾率正確)
[編輯本段]附貪心演算法成功案例之一
馬踏棋盤的貪心演算法 123041-23 XX 【問題描述】 馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條最短路徑。 【初步設計】 首先這是一個搜索問題,運用深度優先搜索進行求解。演算法如下: 1、 輸入初始位置坐標x,y; 2、 步驟 c: 如果c> 64輸出一個解,返回上一步驟c-- (x,y) ← c 計算(x,y)的八個方位的子結點,選出那此可行的子結點 循環遍歷所有可行子結點,步驟c++重復2 顯然(2)是一個遞歸調用的過程,大致如下: void dfs(int x,int y,int count) { int i,tx,ty; if(count> N*N) { output_solution();//輸入一個解 return; }
❾ 演算法09-貪心演算法
貪心演算法與動態規劃的不同在於它對每個子問題的解決方案都作出選擇,不能回退。動態規劃則會保存以前的運算結果,並根據以前的結果對當前進行選擇,有回退功能。
很多情況下,可以在某一步用貪心演算法,全局再加一個搜索或遞歸或動態規劃之類
貪心法可以解決一些最優化問題,如:求圖中的最小生成樹、求哈夫曼編碼等。然而對於工程和生活中的問題,貪心法一般不能得到我們所要求的答案。
一單一個問題可以通過貪心法來解決,那麼貪心法一般是解決這個問題的最好辦法。由於貪心法的高效性以及其所求得的答案比較接近最優結果,貪心法也可以用作輔助演算法或者直接解決一些要求結果不特別精確的問題。
當硬幣可選集合固定:Coins = [20,10,5,1],求最少幾個硬幣可以拼出總數。比如total=36。
36 - 20 = 16 20
16 - 10 = 6 20 10
6 - 5 = 1 20 10 5
1 - 1 = 0 20 10 5 1
前面這些硬幣依次是後面硬幣的整數倍,可以用貪心法,能得到最優解,
貪心法的反例
非整除關系的硬幣,可選集合:Coins = [10,9,1],求拼出總數為18最少需要幾個硬幣?
最優化演算法:9 + 9 = 18 兩個9
貪心演算法:18 - 10 = 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 0 八個1
簡單地說,問題能夠分解成子問題來解決,子問題的最優解能遞推到最終問題的最優解。這種子問題最優解成為最優子結構。
貪心演算法與動態規劃的不同在於它對每個子問題的最終方案都作出選擇,不能回退。
動態規劃則會保存以前的運算結果,並根據以前的結果對當前進行選擇,有回退功能。
假設你是一位很棒的家長,想要給你的孩子們一些小餅干。但是,每個孩子最多隻能給一塊餅干。
對每個孩子 i,都有一個胃口值 g[i],這是能讓孩子們滿足胃口的餅乾的最小尺寸;並且每塊餅干 j,都有一個尺寸 s[j] 。如果 s[j] >= g[i],我們可以將這個餅干 j 分配給孩子 i ,這個孩子會得到滿足。你的目標是盡可能滿足越多數量的孩子,並輸出這個最大數值。
示例 1:
輸入: g = [1,2,3], s = [1,1]
輸出: 1
解釋:
你有三個孩子和兩塊小餅干,3個孩子的胃口值分別是:1,2,3。
雖然你有兩塊小餅干,由於他們的尺寸都是1,你只能讓胃口值是1的孩子滿足。
所以你應該輸出1。
示例 2:
輸入: g = [1,2], s = [1,2,3]
輸出: 2
解釋:
你有兩個孩子和三塊小餅干,2個孩子的胃口值分別是1,2。
你擁有的餅干數量和尺寸都足以讓所有孩子滿足。
所以你應該輸出2.
提示:
1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1
給定一個數組,它的第 i 個元素是一支給定股票第 i 天的價格。
設計一個演算法來計算你所能獲取的最大利潤。你可以盡可能地完成更多的交易(多次買賣一支股票)。
注意:你不能同時參與多筆交易(你必須在再次購買前出售掉之前的股票)。
示例 1:
輸入: [7,1,5,3,6,4]
輸出: 7
解釋: 在第 2 天(股票價格 = 1)的時候買入,在第 3 天(股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
隨後,在第 4 天(股票價格 = 3)的時候買入,在第 5 天(股票價格 = 6)的時候賣出, 這筆交易所能獲得利潤 = 6-3 = 3 。
示例 2:
輸入: [1,2,3,4,5]
輸出: 4
解釋: 在第 1 天(股票價格 = 1)的時候買入,在第 5 天 (股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接連購買股票,之後再將它們賣出。
因為這樣屬於同時參與了多筆交易,你必須在再次購買前出售掉之前的股票。
示例 3:
輸入: [7,6,4,3,1]
輸出: 0
解釋: 在這種情況下, 沒有交易完成, 所以最大利潤為 0。
給定一個非負整數數組 nums ,你最初位於數組的 第一個下標 。
數組中的每個元素代表你在該位置可以跳躍的最大長度。
判斷你是否能夠到達最後一個下標。
示例 1:
輸入:nums = [2,3,1,1,4]
輸出:true
解釋:可以先跳 1 步,從下標 0 到達下標 1, 然後再從下標 1 跳 3 步到達最後一個下標。
示例 2:
輸入:nums = [3,2,1,0,4]
輸出:false
解釋:無論怎樣,總會到達下標為 3 的位置。但該下標的最大跳躍長度是 0 , 所以永遠不可能到達最後一個下標。
給定一個非負整數數組,你最初位於數組的第一個位置。
數組中的每個元素代表你在該位置可以跳躍的最大長度。
你的目標是使用最少的跳躍次數到達數組的最後一個位置。
示例:
輸入: [2,3,1,1,4]
輸出: 2
解釋: 跳到最後一個位置的最小跳躍數是 2。
從下標為 0 跳到下標為 1 的位置,跳 1 步,然後跳 3 步到達數組的最後一個位置。
說明:
假設你總是可以到達數組的最後一個位置。
移動下標只要遇到當前覆蓋最遠距離的下標,直接步數加一,不考慮是不是終點的情況。
想要達到這樣的效果,只要讓移動下標,最大隻能移動到nums.size - 2的地方就可以了。
因為當移動下標指向nums.size - 2時:
如果移動下標等於當前覆蓋最大距離下標, 需要再走一步(即ans++),因為最後一步一定是可以到的終點。(題目假設總是可以到達數組的最後一個位置),如圖:
如果移動下標不等於當前覆蓋最大距離下標,說明當前覆蓋最遠距離就可以直接達到終點了,不需要再走一步。如圖:
機器人在一個無限大小的 XY 網格平面上行走,從點 (0, 0) 處開始出發,面向北方。該機器人可以接收以下三種類型的命令 commands :
-2 :向左轉 90 度
-1 :向右轉 90 度
1 <= x <= 9 :向前移動 x 個單位長度
在網格上有一些格子被視為障礙物 obstacles 。第 i 個障礙物位於網格點 obstacles[i] = (xi, yi) 。
機器人無法走到障礙物上,它將會停留在障礙物的前一個網格方塊上,但仍然可以繼續嘗試進行該路線的其餘部分。
返回從原點到機器人所有經過的路徑點(坐標為整數)的最大歐式距離的平方。(即,如果距離為 5 ,則返回 25 )
注意:
北表示 +Y 方向。
東表示 +X 方向。
南表示 -Y 方向。
西表示 -X 方向。
示例 1:
輸入:commands = [4,-1,3], obstacles = []
輸出:25
解釋:
機器人開始位於 (0, 0):
在檸檬水攤上,每一杯檸檬水的售價為 5 美元。
顧客排隊購買你的產品,(按賬單 bills 支付的順序)一次購買一杯。
每位顧客只買一杯檸檬水,然後向你付 5 美元、10 美元或 20 美元。你必須給每個顧客正確找零,也就是說凈交易是每位顧客向你支付 5 美元。
注意,一開始你手頭沒有任何零錢。
如果你能給每位顧客正確找零,返回 true ,否則返回 false 。
示例 1:
輸入:[5,5,5,10,20]
輸出:true
解釋:
前 3 位顧客那裡,我們按順序收取 3 張 5 美元的鈔票。
第 4 位顧客那裡,我們收取一張 10 美元的鈔票,並返還 5 美元。
第 5 位顧客那裡,我們找還一張 10 美元的鈔票和一張 5 美元的鈔票。
由於所有客戶都得到了正確的找零,所以我們輸出 true。
示例 2:
輸入:[5,5,10]
輸出:true
示例 3:
輸入:[10,10]
輸出:false
示例 4:
輸入:[5,5,10,10,20]
輸出:false
解釋:
前 2 位顧客那裡,我們按順序收取 2 張 5 美元的鈔票。
對於接下來的 2 位顧客,我們收取一張 10 美元的鈔票,然後返還 5 美元。
對於最後一位顧客,我們無法退回 15 美元,因為我們現在只有兩張 10 美元的鈔票。
由於不是每位顧客都得到了正確的找零,所以答案是 false。
給定不同面額的硬幣 coins 和一個總金額 amount。編寫一個函數來計算可以湊成總金額所需的最少的硬幣個數。如果沒有任何一種硬幣組合能組成總金額,返回 -1。
你可以認為每種硬幣的數量是無限的。
示例 1:
輸入:coins = [1, 2, 5], amount = 11
輸出:3
解釋:11 = 5 + 5 + 1
示例 2:
輸入:coins = [2], amount = 3
輸出:-1
示例 3:
輸入:coins = [1], amount = 0
輸出:0
示例 4:
輸入:coins = [1], amount = 1
輸出:1
示例 5:
輸入:coins = [1], amount = 2
輸出:2
❿ 收集各類貪心演算法(C語言編程)經典題目
舉個例子,假如你買東西,老闆需要找給你99分錢,他有上面面值分別為25分,10分,5分,1分的硬幣(都是假如,不符合實際),他得找你3個25分,2個10分的,4個1分的才為最佳方案!
用貪心演算法編寫程序實現!
main()
{
int
i,a[5],b[4],c[4];
/*
define
the
type
of
the
money*/
a[1]=25;
a[2]=10;
a[3]=5;
a[4]=1;
printf("please
input
you
money
(fen):\n");
scanf("%d",&b[0]);
for
(i=1;i<=4;i++)
{
b[i]=b[i-1]%a[i];
/*take
n
25
off
and
money
left*/
c[i]=(b[i-1]-b[i])/a[i];
/*
n
*/
printf("%d
is
%d\n",a[i],c[i]);
}
getch();
}