⑴ 關於快速排序和歸並排序的時間復雜度
首先你說歸並排序最壞的情形為O(NlogN),這是不正確的歸並排序如果不藉助輔助空間的話,復雜度為O(n^2),藉助的話就是O(nlogn)(O(nlog2n))歸並排序 平均復雜度是 O(nlogn) 比較快
快速排序快速排序的最壞情況基於每次劃分對主元的選擇。基本的快速排序選取第一個元素作為主元。這樣在數組已經有序的情況下,每次劃分將得到最壞的結果。一種比較常見的優化方法是隨機化演算法,即隨機選取一個元素作為主元。這種情況下雖然最壞情況仍然是O(n^2),但最壞情況不再依賴於輸入數據,而是由於隨機函數取值不佳。實際上,隨機化快速排序得到理論最壞情況的可能性僅為1/(2^n)。所以隨機化快速排序可以對於絕大多數輸入數據達到O(nlogn)的期望時間復雜度。一位前輩做出了一個精闢的總結:「隨機化快速排序可以滿足一個人一輩子的人品需求。」
隨機化快速排序的唯一缺點在於,一旦輸入數據中有很多的相同數據,隨機化的效果將直接減弱。對於極限情況,即對於n個相同的數排序,隨機化快速排序的時間復雜度將毫無疑問的降低到O(n^2)。解決方法是用一種方法進行掃描,使沒有交換的情況下主元保留在原位置。
綜合來說快速排序速度最快,時間復雜度最小。希望對你有所幫助!
⑵ 排序演算法概述
十大排序演算法:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序、希爾排序、計數排序,基數排序,桶排序
穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,前一個鍵排序的結果可以為後一個鍵排序所用。
演算法的復雜度往往取決於數據的規模大小和數據本身分布性質。
時間復雜度 : 一個演算法執行所耗費的時間。
空間復雜度 :對一個演算法在運行過程中臨時佔用存儲空間大小的量度。
常見復雜度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)
在各種不同演算法中,若演算法中語句執行次數(佔用空間)為一個常數,則復雜度為O(1);
當一個演算法的復雜度與以2為底的n的對數成正比時,可表示為O(log n);
當一個演算法的復雜度與n成線性比例關系時,可表示為O (n),依次類推。
冒泡、選擇、插入排序需要兩個for循環,每次只關注一個元素,平均時間復雜度為
(一遍找元素O(n),一遍找位置O(n))
快速、歸並、堆基於分治思想,log以2為底,平均時間復雜度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相關
而希爾排序依賴於所取增量序列的性質,但是到目前為止還沒有一個最好的增量序列 。例如希爾增量序列時間復雜度為O(n²),而Hibbard增量序列的希爾排序的時間復雜度為 , 有人在大量的實驗後得出結論;當n在某個特定的范圍後希爾排序的最小時間復雜度大約為n^1.3。
從平均時間來看,快速排序是效率最高的:
快速排序中平均時間復雜度O(nlog n),這個公式中隱含的常數因子很小,比歸並排序的O(nlog n)中的要小很多,所以大多數情況下,快速排序總是優於合並排序的。
而堆排序的平均時間復雜度也是O(nlog n),但是堆排序存在著重建堆的過程,它把根節點移除後,把最後的葉子結點拿上來後需要重建堆,但是,拿上的值是要比它的兩個葉子結點要差很多的,一般要比較很多次,才能回到合適的位置。堆排序就會有很多的時間耗在堆調整上。
雖然快速排序的最壞情況為排序規模(n)的平方關系,但是這種最壞情況取決於每次選擇的基準, 對於這種情況,已經提出了很多優化的方法,比如三取樣劃分和Dual-Pivot快排。
同時,當排序規模較小時,劃分的平衡性容易被打破,而且頻繁的方法調用超過了O(nlog n)為
省出的時間,所以一般排序規模較小時,會改用插入排序或者其他排序演算法。
一種簡單的排序演算法。它反復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。這個工作重復地進行直到沒有元素再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為元素會經由交換慢慢「浮」到數列的頂端。
1.從數組頭開始,比較相鄰的元素。如果第一個比第二個大(小),就交換它們兩個;
2.對每一對相鄰元素作同樣的工作,從開始第一對到尾部的最後一對,這樣在最後的元素應該會是最大(小)的數;
3.重復步驟1~2,重復次數等於數組的長度,直到排序完成。
首先,找到數組中最大(小)的那個元素;
其次,將它和數組的第一個元素交換位置(如果第一個元素就是最大(小)元素那麼它就和自己交換);
再次,在剩下的元素中找到最大(小)的元素,將它與數組的第二個元素交換位置。如此往復,直到將整個數組排序。
這種方法叫做選擇排序,因為它在不斷地選擇剩餘元素之中的最大(小)者。
對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
為了給要插入的元素騰出空間,我們需要將插入位置之後的已排序元素在都向後移動一位。
插入排序所需的時間取決於輸入中元素的初始順序。例如,對一個很大且其中的元素已經有序(或接近有序)的數組進行排序將會比對隨機順序的數組或是逆序數組進行排序要快得多。
總的來說,插入排序對於部分有序的數組十分高效,也很適合小規模數組。
一種基於插入排序的快速的排序演算法。簡單插入排序對於大規模亂序數組很慢,因為元素只能一點一點地從數組的一端移動到另一端。例如,如果主鍵最小的元素正好在數組的盡頭,要將它挪到正確的位置就需要N-1 次移動。
希爾排序為了加快速度簡單地改進了插入排序,也稱為縮小增量排序,同時該演算法是突破O(n^2)的第一批演算法之一。
希爾排序是把待排序數組按一定數量的分組,對每組使用直接插入排序演算法排序;然後縮小數量繼續分組排序,隨著數量逐漸減少,每組包含的元素越來越多,當數量減至 1 時,整個數組恰被分成一組,排序便完成了。這個不斷縮小的數量,就構成了一個增量序列。
在先前較大的增量下每個子序列的規模都不大,用直接插入排序效率都較高,盡管在隨後的增量遞減分組中子序列越來越大,由於整個序列的有序性也越來越明顯,則排序效率依然較高。
從理論上說,只要一個數組是遞減的,並且最後一個值是1,都可以作為增量序列使用。有沒有一個步長序列,使得排序過程中所需的比較和移動次數相對較少,並且無論待排序列記錄數有多少,演算法的時間復雜度都能漸近最佳呢?但是目前從數學上來說,無法證明某個序列是「最好的」。
常用的增量序列
希爾增量序列 :{N/2, (N / 2)/2, ..., 1},其中N為原始數組的長度,這是最常用的序列,但卻不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表達式為
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法的一個非常典型的應用。
對於給定的一組數據,利用遞歸與分治技術將數據序列劃分成為越來越小的半子表,在對半子表排序後,再用遞歸方法將排好序的半子表合並成為越來越大的有序序列。
為了提升性能,有時我們在半子表的個數小於某個數(比如15)的情況下,對半子表的排序採用其他排序演算法,比如插入排序。
若將兩個有序表合並成一個有序表,稱為2-路歸並,與之對應的還有多路歸並。
快速排序(Quicksort)是對冒泡排序的一種改進,也是採用分治法的一個典型的應用。
首先任意選取一個數據(比如數組的第一個數)作為關鍵數據,我們稱為基準數(Pivot),然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序,也稱為分區(partition)操作。
通過一趟快速排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數組變成有序序列。
為了提升性能,有時我們在分割後獨立的兩部分的個數小於某個數(比如15)的情況下,會採用其他排序演算法,比如插入排序。
基準的選取:最優的情況是基準值剛好取在無序區數值的中位數,這樣能夠最大效率地讓兩邊排序,同時最大地減少遞歸劃分的次數,但是一般很難做到最優。基準的選取一般有三種方式,選取數組的第一個元素,選取數組的最後一個元素,以及選取第一個、最後一個以及中間的元素的中位數(如4 5 6 7, 第一個4, 最後一個7, 中間的為5, 這三個數的中位數為5, 所以選擇5作為基準)。
Dual-Pivot快排:雙基準快速排序演算法,其實就是用兩個基準數, 把整個數組分成三份來進行快速排序,在這種新的演算法下面,比經典快排從實驗來看節省了10%的時間。
許多應用程序都需要處理有序的元素,但不一定要求他們全部有序,或者不一定要一次就將他們排序,很多時候,我們每次只需要操作數據中的最大元素(最小元素),那麼有一種基於二叉堆的數據結構可以提供支持。
所謂二叉堆,是一個完全二叉樹的結構,同時滿足堆的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。在一個二叉堆中,根節點總是最大(或者最小)節點。
堆排序演算法就是抓住了這一特點,每次都取堆頂的元素,然後將剩餘的元素重新調整為最大(最小)堆,依次類推,最終得到排序的序列。
推論1:對於位置為K的結點 左子結點=2 k+1 右子結點=2 (k+1)
驗證:C:2 2 2+1=5 2 (2+1)=6
推論2:最後一個非葉節點的位置為 (N/2)-1,N為數組長度。
驗證:數組長度為6,(6/2)-1=2
計數排序對一定范圍內的整數排序時候的速度非常快,一般快於其他排序演算法。但計數排序局限性比較大,只限於對整數進行排序,而且待排序元素值分布較連續、跨度小的情況。
計數排序是一個排序時不比較元素大小的排序演算法。
如果一個數組里所有元素都是整數,而且都在0-K以內。對於數組里每個元素來說,如果能知道數組里有多少項小於或等於該元素,就能准確地給出該元素在排序後的數組的位置。
桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,利用某種函數的映射關系將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序)。
桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當於快排中劃分,已經把大量數據分割成了基本有序的數據塊(桶)。然後只需要對桶中的少量數據做排序即可。
常見的數據元素一般是由若干位組成的,比如字元串由若干字元組成,整數由若干位0~9數字組成。基數排序按照從右往左的順序,依次將每一位都當做一次關鍵字,然後按照該關鍵字對數組排序,同時每一輪排序都基於上輪排序後的結果;當我們將所有的位排序後,整個數組就達到有序狀態。基數排序不是基於比較的演算法。
基數是什麼意思?對於十進制整數,每一位都只可能是0~9中的某一個,總共10種可能。那10就是它的基,同理二進制數字的基為2;對於字元串,如果它使用的是8位的擴展ASCII字元集,那麼它的基就是256。
基數排序 vs 計數排序 vs 桶排序
基數排序有兩種方法:
MSD 從高位開始進行排序
LSD 從低位開始進行排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定范圍的數值
有時,待排序的文件很大,計算機內存不能容納整個文件,這時候對文件就不能使用內部排序了(我們一般的排序都是在內存中做的,所以稱之為內部排序,而外部排序是指待排序的內容不能在內存中一下子完成,它需要做內外存的內容交換),外部排序常採用的排序方法也是歸並排序,這種歸並方法由兩個不同的階段組成:
採用適當的內部排序方法對輸入文件的每個片段進行排序,將排好序的片段(成為歸並段)寫到外部存儲器中(通常由一個可用的磁碟作為臨時緩沖區),這樣臨時緩沖區中的每個歸並段的內容是有序的。
利用歸並演算法,歸並第一階段生成的歸並段,直到只剩下一個歸並段為止。
例如要對外存中4500個記錄進行歸並,而內存大小隻能容納750個記錄,在第一階段,我們可以每次讀取750個記錄進行排序,這樣可以分六次讀取,進行排序,可以得到六個有序的歸並段
每個歸並段的大小是750個記錄,並將這些歸並段全部寫到臨時緩沖區(由一個可用的磁碟充當)內了,這是第一步的排序結果。
完成第二步該怎麼做呢?這時候歸並演算法就有用處了。
⑶ 各種排序演算法的總結和比較
排序演算法是《數據結構與演算法》中最基本的演算法之一。
排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。用一張圖概括:
點擊以下圖片查看大圖:
關於時間復雜度
平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。
線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸並排序;
O(n1+§)) 排序,§ 是介於 0 和 1 之間的常數。 希爾排序
線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。
關於穩定性
穩定的排序演算法:冒泡排序、插入排序、歸並排序和基數排序。
不是穩定的排序演算法:選擇排序、快速排序、希爾排序、堆排序。
名詞解釋:
n:數據規模 k:"桶"的個數 In-place:佔用常數內存,不佔用額外內存 Out-place:佔用額外內存 穩定性:排序後 2 個相等鍵值的順序和排序之前它們的順序相同包含以下內容:
1、冒泡排序 2、選擇排序 3、插入排序 4、希爾排序 5、歸並排序 6、快速排序 7、堆排序 8、計數排序 9、桶排序 10、基數排序排序演算法包含的相關內容具體如下:
冒泡排序演算法
冒泡排序(Bubble Sort)也是一種簡單直觀的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢"浮"到數列的頂端。
選擇排序演算法
選擇排序是一種簡單直觀的排序演算法,無論什麼數據進去都是 O(n?) 的時間復雜度。所以用到它的時候,數據規模越小越好。唯一的好處可能就是不佔用額外的內存空間。
插入排序演算法
插入排序的代碼實現雖然沒有冒泡排序和選擇排序那麼簡單粗暴,但它的原理應該是最容易理解的了,因為只要打過撲克牌的人都應該能夠秒懂。插入排序是一種最簡單直觀的排序演算法,它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
希爾排序演算法
希爾排序,也稱遞減增量排序演算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序演算法。
歸並排序演算法
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
計數排序演算法
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
桶排序演算法
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。
基數排序演算法
基數排序是一種非比較型整數排序演算法,其原理是將整數按位數切割成不同的數字,然後按每個位數分別比較。由於整數也可以表達字元串(比如名字或日期)和特定格式的浮點數,所以基數排序也不是只能使用於整數。
⑷ 快速排序演算法原理與實現
快速排序的基本思想就是從一個數組中任意挑選一個元素(通常來說會選擇最左邊的元素)作為中軸元素,將剩下的元素以中軸元素作為比較的標准,將小於等於中軸元素的放到中軸元素的左邊,將大於中軸元素的放到中軸元素的右邊。
然後以當前中軸元素的位置為界,將左半部分子數組和右半部分子數組看成兩個新的數組,重復上述操作,直到子數組的元素個數小於等於1(因為一個元素的數組必定是有序的)。
以下的代碼中會常常使用交換數組中兩個元素值的Swap方法,其代碼如下
publicstaticvoidSwap(int[] A, inti, intj){
inttmp;
tmp = A[i];
A[i] = A[j];
A[j] = tmp;
(4)演算法快速與合並排序的總結擴展閱讀:
快速排序演算法 的基本思想是:將所要進行排序的數分為左右兩個部分,其中一部分的所有數據都比另外一 部分的數據小,然後將所分得的兩部分數據進行同樣的劃分,重復執行以上的劃分操作,直 到所有要進行排序的數據變為有序為止。
定義兩個變數low和high,將low、high分別設置為要進行排序的序列的起始元素和最後一個元素的下標。第一次,low和high的取值分別為0和n-1,接下來的每次取值由劃分得到的序列起始元素和最後一個元素的下標來決定。
定義一個變數key,接下來以key的取值為基準將數組A劃分為左右兩個部分,通 常,key值為要進行排序序列的第一個元素值。第一次的取值為A[0],以後毎次取值由要劃 分序列的起始元素決定。
從high所指向的數組元素開始向左掃描,掃描的同時將下標為high的數組元素依次與劃分基準值key進行比較操作,直到high不大於low或找到第一個小於基準值key的數組元素,然後將該值賦值給low所指向的數組元素,同時將low右移一個位置。
如果low依然小於high,那麼由low所指向的數組元素開始向右掃描,掃描的同時將下標為low的數組元素值依次與劃分的基準值key進行比較操作,直到low不小於high或找到第一個大於基準值key的數組元素,然後將該值賦給high所指向的數組元素,同時將high左移一個位置。
重復步驟(3) (4),直到low的植不小於high為止,這時成功劃分後得到的左右兩部分分別為A[low……pos-1]和A[pos+1……high],其中,pos下標所對應的數組元素的值就是進行劃分的基準值key,所以在劃分結束時還要將下標為pos的數組元素賦值 為 key。
⑸ 如何理解快速排序的效率高於歸並排序,堆排序,如何
堆排序
平均時間:o(n*logn)
最壞:o(n*logn)
快速排序
平均時間:o(n*logn)
最壞:o(n的平方)
歸並排序
平均時間:o(n*logn)
最壞:o(n的平方)
排序演算法沒有最快情況的說法。
從平均性能來說,快速排序最佳,因為所需時間最短,但快速排序在最壞情況下的時間性能不如堆排序和歸並排序。n較大時,歸並排序所需時間較堆排序省,但歸並排序需要的輔助存儲量更大。
⑹ 合並排序和快速排序的區別
歸並排序,簡單來說就是先將數組不斷細分成最小的單位,然後每個單位分別排序,排序完畢後合並,重復以上過程最後就可以得到排序結果。
快速排序,簡單來說就是先選定一個基準元素,然後以該基準元素劃分數組,再在被劃分的部分重復以上過程,最後可以得到排序結果。
兩者都是用分治法的思想,不過最後歸並排序的合並操作比快速排序的要繁瑣。
⑺ 插入排序、合並排序和快速排序演算法的C語言實現與性能比較
前三個的實現很簡單,代碼也是很容易找的,不過樓上說的clock()函數可能無法統計函數調用所用的時間,那個只能統計某一段所用的時間,而不包括某個函數調用的時間呢
不過可以用
#include<time.h>
的
LARGE_INTEGER BegainTime ;
LARGE_INTEGER EndTime ;
LARGE_INTEGER Frequency ;
QueryPerformanceFrequency(&Frequency);
QueryPerformanceCounter(&BegainTime) ;
調用的函數;
QueryPerformanceCounter(&EndTime);
printf("運行時間(單位:s):%f" ,(double)( EndTime.QuadPart - BegainTime.QuadPart )/ Frequency.QuadPart)
⑻ 幾種排序方法
這兩天復習了一下排序方面的知識,現將目前比較常見的整理一下。 選擇排序選擇排序的思想是首先先找到序列中最大元素並將它與序列中最後一個元素交換,然後找下一個最大元素並與倒數第二個元素交換,依次類推。此排序很簡單,這不做多說,代碼實現如下:View Code插入排序演算法流程:1. 從第一個元素開始,該元素可以認為已經被排序 2. 取出下一個元素,在已經排序的元素序列中從後向前掃描 3. 如果該元素(已排序)大於新元素,將該元素移到下一位置 4. 重復步驟3,直到找到已排序的元素小於或者等於新元素的位置 5. 將新元素插入到下一位置中 6. 重復步驟2View Code冒泡排序依次比較相鄰的兩個數,將小數放在前面,大數放在後面。即在第一趟:首先比較第1個和第2個數,將小數放前,大數放後。然後比較第2個數和第3個數,將小數放前,大數放後,如此繼續,直至比較最後兩個數,將小數放前,大數放後。至此第一趟結束,將最大的數放到了最後。在第二趟:仍從第一對數開始比較(因為可能由於第2個數和第3個數的交換,使得第1個數不再小於第2個數),將小數放前,大數放後,一直比較到倒數第二個數(倒數第一的位置上已經是最大的),第二趟結束,在倒數第二的位置上得到一個新的最大數(其實在整個數列中是第二大的數)。如此下去,重復以上過程,直至最終完成排序。 View Code合並排序在介紹合並排序之前,首先介紹下遞歸設計的技術,稱為分治法。分治法的核心思想是:當問題比較小時,直接解決。當問題比較大時,將問題分為兩個較小的子問題,每個子問題約為原來的一半。使用遞歸調用解決每個子問題。遞歸調用結束後,常常需要額外的處理,將較小的問題的結果合並,得到較大的問題的答案。 合並排序演算法在接近數組中間的位置劃分數組,然後使用遞歸運算對兩個一半元素構成的數組進行排序,最後將兩個子數組進行合並,形成一個新的已排好序的數組。 代碼如下:View Code快速排序快速排序與合並排序有著很多相似性。將要排序的數組分成兩個子數組,通過兩次遞歸調用分別對兩個數組進行排序,再將已經排好序的兩個數組合並成一個獨立的有序數組。但是,將數組一分為二的做法比合並排序中使用的簡單方法復雜的多。它需要將所有小於或者等於基準元素的元素放置到基準元素前面的位置,將大於基準的元素放置到基準後面的位置。
⑼ 在快速排序、堆排序、歸並排序中,什麼排序是穩定的
歸並排序是穩定的排序演算法。
歸並排序的穩定性分析:
歸並排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素或者2個序列,然後把各個有序的段序列合並成一個有序的長序列,不斷合並直到原序列全部排好序。
可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等,沒有外部干擾,將不會破壞穩定性。
那麼,在短的有序序列合並的過程中,穩定性是沒有受到破壞的,合並過程中如果兩個當前元素相等時,把處在前面的序列的元素保存在結果序列的前面,這樣就保證了穩定性。所以,歸並排序也是穩定的排序演算法。
(9)演算法快速與合並排序的總結擴展閱讀:
演算法穩定性的判斷方法:
在常見的排序演算法中,堆排序、快速排序、希爾排序、直接選擇排序是不穩定的排序演算法,而基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。
需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
比如,快速排序原本是不穩定的排序方法,但若待排序記錄中只有一組具有相同關鍵碼的記錄,而選擇的軸值恰好是這組相同關鍵碼中的一個,此時的快速排序就是穩定的。
參考資料來源:網路-排序演算法穩定性
⑽ 常見的幾種排序演算法總結
對於非科班生的我來說,演算法似乎對我來說是個難點,查閱了一些資料,趁此來了解一下幾種排序演算法。
首先了解一下,什麼是程序
關於排序演算法通常我們所說的往往指的是內部排序演算法,即數據記錄在內存中進行排序。
排序演算法大體可分為兩種:
一種是比較排序,時間復雜度O(nlogn) ~ O(n^2),主要有:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序等。
另一種是非比較排序,時間復雜度可以達到O(n),主要有:計數排序,基數排序,桶排序等
冒泡排序它重復地走訪過要排序的元素,一次比較相鄰兩個元素,如果他們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。這個演算法的名字由來是因為越小(或越大)的元素會經由交換慢慢「浮」到數列的頂端。
選擇排序類似於冒泡排序,只不過選擇排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小(大)元素,放到已排序序列的末尾,以此類推,直到所有元素均排序完畢。
插入排序比冒泡排序和選擇排序更有效率,插入排序類似於生活中抓撲克牌來。
插入排序具體演算法描述,以數組[3, 2, 4, 5, 1]為例。
前面三種排序演算法只有教學價值,因為效率低,很少實際使用。歸並排序(Merge sort)則是一種被廣泛使用的排序方法。
它的基本思想是,將兩個已經排序的數組合並,要比從頭開始排序所有元素來得快。因此,可以將數組拆開,分成n個只有一個元素的數組,然後不斷地兩兩合並,直到全部排序完成。
以對數組[3, 2, 4, 5, 1] 進行從小到大排序為例,步驟如下:
有了merge函數,就可以對任意數組排序了。基本方法是將數組不斷地拆成兩半,直到每一半隻包含零個元素或一個元素為止,然後就用merge函數,將拆成兩半的數組不斷合並,直到合並成一整個排序完成的數組。
快速排序(quick sort)是公認最快的排序演算法之一,有著廣泛的應用。
快速排序演算法步驟
參考:
常用排序演算法總結(一)
阮一峰-演算法總結