『壹』 模型樹層次經驗請教(高手都進來吧!)
謝謝!我感覺
很多曲面特徵都放在一同有點亂。
假如每個重要特徵所用的曲面特徵放在一個曲面集里,看上往比較有次序,而且修正起來比較方便。但是假如零件里特徵多的話,也有很多曲面集在模型樹里,你覺得如何??????????還有一個題目請教大蝦,我在拆卸里設計零件時,需求借用其他零件的特徵,當我用「曲面提取」得到另外零件的曲面特徵。但是假如借用零件發生變化,這個零件往往不會跟著變化,我好像記得有個publication的
操縱,用在這方面,還請大蝦你指點。
特別是top-down
建模時,基本建模思路能講解一下嘛?????????謝謝
『貳』 決策樹演算法原理
決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什麼條件下會得到什麼值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。
如果不考慮效率等,那麼樣本所有特徵的判斷級聯起來終會將某一個樣本分到一個類終止塊上。實際上,樣本所有特徵中有一些特徵在分類時起到決定性作用,決策樹的構造過程就是找到這些具有決定性作用的特徵,根據其決定性程度來構造一個倒立的樹--決定性作用最大的那個特徵作為根節點,然後遞歸找到各分支下子數據集中次大的決定性特徵,直至子數據集中所有數據都屬於同一類。所以,構造決策樹的過程本質上就是根據數據特徵將數據集分類的遞歸過程,我們需要解決的第一個問題就是,當前數據集上哪個特徵在劃分數據分類時起決定性作用。
一棵決策樹的生成過程主要分為以下3個部分:
特徵選擇:特徵選擇是指從訓練數據中眾多的特徵中選擇一個特徵作為當前節點的分裂標准,如何選擇特徵有著很多不同量化評估標准標准,從而衍生出不同的決策樹演算法。
決策樹生成: 根據選擇的特徵評估標准,從上至下遞歸地生成子節點,直到數據集不可分則停止決策樹停止生長。 樹結構來說,遞歸結構是最容易理解的方式。
剪枝:決策樹容易過擬合,一般來需要剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有預剪枝和後剪枝兩種。
劃分數據集的最大原則是:使無序的數據變的有序。如果一個訓練數據中有20個特徵,那麼選取哪個做劃分依據?這就必須採用量化的方法來判斷,量化劃分方法有多重,其中一項就是「資訊理論度量信息分類」。基於資訊理論的決策樹演算法有ID3、CART和C4.5等演算法,其中C4.5和CART兩種演算法從ID3演算法中衍生而來。
CART和C4.5支持數據特徵為連續分布時的處理,主要通過使用二元切分來處理連續型變數,即求一個特定的值-分裂值:特徵值大於分裂值就走左子樹,或者就走右子樹。這個分裂值的選取的原則是使得劃分後的子樹中的「混亂程度」降低,具體到C4.5和CART演算法則有不同的定義方式。
ID3演算法由Ross Quinlan發明,建立在「奧卡姆剃刀」的基礎上:越是小型的決策樹越優於大的決策樹(be simple簡單理論)。ID3演算法中根據資訊理論的信息增益評估和選擇特徵,每次選擇信息增益最大的特徵做判斷模塊。ID3演算法可用於劃分標稱型數據集,沒有剪枝的過程,為了去除過度數據匹配的問題,可通過裁剪合並相鄰的無法產生大量信息增益的葉子節點(例如設置信息增益閥值)。使用信息增益的話其實是有一個缺點,那就是它偏向於具有大量值的屬性--就是說在訓練集中,某個屬性所取的不同值的個數越多,那麼越有可能拿它來作為分裂屬性,而這樣做有時候是沒有意義的,另外ID3不能處理連續分布的數據特徵,於是就有了C4.5演算法。CART演算法也支持連續分布的數據特徵。
C4.5是ID3的一個改進演算法,繼承了ID3演算法的優點。C4.5演算法用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足在樹構造過程中進行剪枝;能夠完成對連續屬性的離散化處理;能夠對不完整數據進行處理。C4.5演算法產生的分類規則易於理解、准確率較高;但效率低,因樹構造過程中,需要對數據集進行多次的順序掃描和排序。也是因為必須多次數據集掃描,C4.5隻適合於能夠駐留於內存的數據集。
CART演算法的全稱是Classification And Regression Tree,採用的是Gini指數(選Gini指數最小的特徵s)作為分裂標准,同時它也是包含後剪枝操作。ID3演算法和C4.5演算法雖然在對訓練樣本集的學習中可以盡可能多地挖掘信息,但其生成的決策樹分支較大,規模較大。為了簡化決策樹的規模,提高生成決策樹的效率,就出現了根據GINI系數來選擇測試屬性的決策樹演算法CART。
決策樹演算法的優點:
(1)便於理解和解釋,樹的結構可以可視化出來
(2)基本不需要預處理,不需要提前歸一化,處理缺失值
(3)使用決策樹預測的代價是O(log2m),m為樣本數
(4)能夠處理數值型數據和分類數據
(5)可以處理多維度輸出的分類問題
(6)可以通過數值統計測試來驗證該模型,這使解釋驗證該模型的可靠性成為可能
(7)即使該模型假設的結果與真實模型所提供的數據有些違反,其表現依舊良好
決策樹演算法的缺點:
(1)決策樹模型容易產生一個過於復雜的模型,這樣的模型對數據的泛化性能會很差。這就是所謂的過擬合.一些策略像剪枝、設置葉節點所需的最小樣本數或設置數的最大深度是避免出現該問題最為有效地方法。
(2)決策樹可能是不穩定的,因為數據中的微小變化可能會導致完全不同的樹生成。這個問題可以通過決策樹的集成來得到緩解。
(3)在多方面性能最優和簡單化概念的要求下,學習一棵最優決策樹通常是一個NP難問題。因此,實際的決策樹學習演算法是基於啟發式演算法,例如在每個節點進行局部最優決策的貪心演算法。這樣的演算法不能保證返回全局最優決策樹。這個問題可以通過集成學習來訓練多棵決策樹來緩解,這多棵決策樹一般通過對特徵和樣本有放回的隨機采樣來生成。
(4)有些概念很難被決策樹學習到,因為決策樹很難清楚的表述這些概念。例如XOR,奇偶或者復用器的問題。
(5)如果某些類在問題中佔主導地位會使得創建的決策樹有偏差。因此,我們建議在擬合前先對數據集進行平衡。
(1)當數據的特徵維度很高而數據量又很少的時候,這樣的數據在構建決策樹的時候往往會過擬合。所以我們要控制樣本數量和特徵的之間正確的比率;
(2)在構建決策樹之前,可以考慮預先執行降維技術(如PCA,ICA或特徵選擇),以使我們生成的樹更有可能找到具有辨別力的特徵;
(3)在訓練一棵樹的時候,可以先設置max_depth=3來將樹可視化出來,以便我們找到樹是怎樣擬合我們數據的感覺,然後在增加我們樹的深度;
(4)樹每增加一層,填充所需的樣本數量是原來的2倍,比如我們設置了最小葉節點的樣本數量,當我們的樹層數增加一層的時候,所需的樣本數量就會翻倍,所以我們要控制好樹的最大深度,防止過擬合;
(5)使用min_samples_split(節點可以切分時擁有的最小樣本數) 和 min_samples_leaf(最小葉節點數)來控制葉節點的樣本數量。這兩個值設置的很小通常意味著我們的樹過擬合了,而設置的很大意味著我們樹預測的精度又會降低。通常設置min_samples_leaf=5;
(6)當樹的類比不平衡的時候,在訓練之前一定要先平很數據集,防止一些類別大的類主宰了決策樹。可以通過采樣的方法將各個類別的樣本數量到大致相等,或者最好是將每個類的樣本權重之和(sample_weight)規范化為相同的值。另請注意,基於權重的預剪枝標准(如min_weight_fraction_leaf)將比不知道樣本權重的標准(如min_samples_leaf)更少偏向主導類別。
(7)如果樣本是帶權重的,使用基於權重的預剪枝標准將更簡單的去優化樹結構,如mn_weight_fraction_leaf,這確保了葉節點至少包含了樣本權值總體總和的一小部分;
(8)在sklearn中所有決策樹使用的數據都是np.float32類型的內部數組。如果訓練數據不是這種格式,則將復制數據集,這樣會浪費計算機資源。
(9)如果輸入矩陣X非常稀疏,建議在調用fit函數和稀疏csr_matrix之前轉換為稀疏csc_matrix,然後再調用predict。 當特徵在大多數樣本中具有零值時,與密集矩陣相比,稀疏矩陣輸入的訓練時間可以快幾個數量級。
『叄』 weka m5p演算法中葉子節點中的百分數是什麼意思
你的問題可能是: 類別屬性(class)不能是數值型(numeric)的,應該是標稱屬性(nominal) 我記得C4.5是分類演算法,不是回歸演算法。如果想要回歸的話可以用其他回歸演算法,比如M5p、多成感知(神經網路)、線性回歸等。
『肆』 數據挖掘-決策樹演算法
決策樹演算法是一種比較簡易的監督學習分類演算法,既然叫做決策樹,那麼首先他是一個樹形結構,簡單寫一下樹形結構(數據結構的時候學過不少了)。
樹狀結構是一個或多個節點的有限集合,在決策樹里,構成比較簡單,有如下幾種元素:
在決策樹中,每個葉子節點都有一個類標簽,非葉子節點包含對屬性的測試條件,用此進行分類。
所以個人理解,決策樹就是 對一些樣本,用樹形結構對樣本的特徵進行分支,分到葉子節點就能得到樣本最終的分類,而其中的非葉子節點和分支就是分類的條件,測試和預測分類就可以照著這些條件來走相應的路徑進行分類。
根據這個邏輯,很明顯決策樹的關鍵就是如何找出決策條件和什麼時候算作葉子節點即決策樹終止。
決策樹的核心是為不同類型的特徵提供表示決策條件和對應輸出的方法,特徵類型和劃分方法包括以下幾個:
注意,這些圖中的第二層都是分支,不是葉子節點。
如何合理的對特徵進行劃分,從而找到最優的決策模型呢?在這里需要引入信息熵的概念。
先來看熵的概念:
在數據集中,參考熵的定義,把信息熵描述為樣本中的不純度,熵越高,不純度越高,數據越混亂(越難區分分類)。
例如:要給(0,1)分類,熵是0,因為能明顯分類,而均衡分布的(0.5,0.5)熵比較高,因為難以劃分。
信息熵的計算公式為:
其中 代表信息熵。 是類的個數, 代表在 類時 發生的概率。
另外有一種Gini系數,也可以用來衡量樣本的不純度:
其中 代表Gini系數,一般用於決策樹的 CART演算法 。
舉個例子:
如果有上述樣本,那麼樣本中可以知道,能被分為0類的有3個,分為1類的也有3個,那麼信息熵為:
Gini系數為:
總共有6個數據,那麼其中0類3個,佔比就是3/6,同理1類。
我們再來計算一個分布比較一下:
信息熵為:
Gini系數為:
很明顯,因為第二個分布中,很明顯這些數偏向了其中一類,所以 純度更高 ,相對的信息熵和Gini系數較低。
有了上述的概念,很明顯如果我們有一組數據要進行分類,最快的建立決策樹的途徑就是讓其在每一層都讓這個樣本純度最大化,那麼就要引入信息增益的概念。
所謂增益,就是做了一次決策之後,樣本的純度提升了多少(不純度降低了多少),也就是比較決策之前的樣本不純度和決策之後的樣本不純度,差越大,效果越好。
讓信息熵降低,每一層降低的越快越好。
度量這個信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不純度的系數)的差, 是樣本(parent是決策之前, 是決策之後)的信息熵(或者其他可以度量不純度的系數), 為特徵值的個數, 是原樣本的記錄總數, 是與決策後的樣本相關聯的記錄個數。
當選擇信息熵作為樣本的不純度度量時,Δ就叫做信息增益 。
我們可以遍歷每一個特徵,看就哪個特徵決策時,產生的信息增益最大,就把他作為當前決策節點,之後在下一層繼續這個過程。
舉個例子:
如果我們的目標是判斷什麼情況下,銷量會比較高(受天氣,周末,促銷三個因素影響),根據上述的信息增益求法,我們首先應該找到根據哪個特徵來決策,以信息熵為例:
首先肯定是要求 ,也就是銷量這個特徵的信息熵:
接下來,就分別看三個特徵關於銷量的信息熵,先看天氣,天氣分為好和壞兩種,其中天氣為好的條件下,銷量為高的有11條,低的有6條;天氣壞時,銷量為高的有7條,銷量為低的有10條,並且天氣好的總共17條,天氣壞的總共17條。
分別計算天氣好和天氣壞時的信息熵,天氣好時:
根據公式 ,可以知道,N是34,而天氣特徵有2個值,則k=2,第一個值有17條可以關聯到決策後的節點,第二個值也是17條,則能得出計算:
再計算周末這個特徵,也只有兩個特徵值,一個是,一個否,其中是有14條,否有20條;周末為是的中有11條銷量是高,3條銷量低,以此類推有:
信息增益為:
另外可以得到是否有促銷的信息增益為0.127268。
可以看出,以周末為決策,可以得到最大的信息增益,因此根節點就可以用周末這個特徵進行分支:
注意再接下來一層的原樣本集,不是34個而是周末為「是」和「否」分別計算,為是的是14個,否的是20個。
這樣一層一層往下遞歸,直到判斷節點中的樣本是否都屬於一類,或者都有同一個特徵值,此時就不繼續往下分了,也就生成了葉子節點。
上述模型的決策樹分配如下:
需要注意的是,特徵是否出現需要在分支當中看,並不是整體互斥的,周末生成的兩個分支,一個需要用促銷來決策,一個需要用天氣,並不代表再接下來就沒有特徵可以分了,而是在促銷決策層下面可以再分天氣,另外一遍天氣決策下面可以再分促銷。
決策樹的模型比較容易解釋,看這個樹形圖就能很容易的說出分類的條件。
我們知道屬性有二元屬性、標稱屬性、序數屬性和連續屬性,其中二元、標稱和序數都是類似的,因為是離散的屬性,按照上述方式進行信息增益計算即可,而連續屬性與這三個不同。
對於連續的屬性,為了降低其時間復雜度,我們可以先將屬性內部排序,之後取相鄰節點的均值作為決策值,依次取每兩個相鄰的屬性值的均值,之後比較他們的不純度度量。
需要注意的是,連續屬性可能在決策樹中出現多次,而不是像離散的屬性一樣在一個分支中出現一次就不會再出現了。
用信息熵或者Gini系數等不純度度量有一個缺點,就是會傾向於將多分支的屬性優先分類——而往往這種屬性並不是特徵。
例如上面例子中的第一行序號,有34個不同的值,那麼信息熵一定很高,但是實際上它並沒有任何意義,因此我們需要規避這種情況,如何規避呢,有兩種方式:
公式如下:
其中k為劃分的總數,如果每個屬性值具有相同的記錄數,則 ,劃分信息等於 ,那麼如果某個屬性產生了大量劃分,則劃分信息很大,信息增益率低,就能規避這種情況了。
為了防止過擬合現象,往往會對決策樹做優化,一般是通過剪枝的方式,剪枝又分為預剪枝和後剪枝。
在構建決策樹時,設定各種各樣的條件如葉子節點的樣本數不大於多少就停止分支,樹的最大深度等,讓決策樹的層級變少以防止過擬合。
也就是在生成決策樹之前,設定了決策樹的條件。
後剪枝就是在最大決策樹生成之後,進行剪枝,按照自底向上的方式進行修剪,修剪的規則是,評估葉子節點和其父節點的代價函數,如果父節點的代價函數比較小,則去掉這個葉子節點。
這里引入的代價函數公式是:
其中 代表的是葉子節點中樣本個數, 代表的是該葉子節點上的不純度度量,把每個葉子節點的 加起來,和父節點的 比較,之後進行剪枝即可。
『伍』 決策樹演算法-原理篇
關於決策樹演算法,我打算分兩篇來講,一篇講思想原理,另一篇直接擼碼來分析演算法。本篇為原理篇。
通過閱讀這篇文章,你可以學到:
1、決策樹的本質
2、決策樹的構造過程
3、決策樹的優化方向
決策樹根據使用目的分為:分類樹和回歸樹,其本質上是一樣的。本文只講分類樹。
決策樹,根據名字來解釋就是,使用樹型結構來模擬決策。
用圖形表示就是下面這樣。
其中橢圓形代表:特徵或屬性。長方形代表:類別結果。
面對一堆數據(含有特徵和類別),決策樹就是根據這些特徵(橢圓形)來給數據歸類(長方形)
例如,信用貸款問題,我根據《神奇動物在哪裡》的劇情給銀行造了個決策樹模型,如下圖:
然而,決定是否貸款可以根據很多特徵,然麻雞銀行選擇了:(1)是否房產價值>100w;(2)是否有其他值錢的抵押物;(3)月收入>10k;(4)是否結婚;這四個特徵,來決定是否給予貸款。
先不管是否合理,但可以肯定的是,決策樹做了特徵選擇工作,即選擇出類別區分度高的特徵。
由此可見, 決策樹其實是一種特徵選擇方法。 (特徵選擇有多種,決策樹屬於嵌入型特徵選擇,以後或許會講到,先給個圖)即選擇區分度高的特徵子集。
那麼, 從特徵選擇角度來看決策樹,決策樹就是嵌入型特徵選擇技術
同時,決策樹也是機器學習中經典分類器演算法,通過決策路徑,最終能確定實例屬於哪一類別。
那麼, 從分類器角度來看決策樹,決策樹就是樹型結構的分類模型
從人工智慧知識表示法角度來看,決策樹類似於if-then的產生式表示法。
那麼, 從知識表示角度來看決策樹,決策樹就是if-then規則的集合
由上面的例子可知,麻雞銀行通過決策樹模型來決定給哪些人貸款,這樣決定貸款的流程就是固定的,而不由人的主觀情感來決定。
那麼, 從使用者角度來看決策樹,決策樹就是規范流程的方法
最後我們再來看看決策樹的本質是什麼已經不重要了。
決策樹好像是一種思想,而通過應用在分類任務中從而成就了「決策樹演算法」。
下面內容還是繼續講解用於分類的「決策樹演算法」。
前面講了決策樹是一種 特徵選擇技術 。
既然決策樹就是一種特徵選擇的方法,那麼經典決策樹演算法其實就是使用了不同的特徵選擇方案。
如:
(1)ID3:使用信息增益作為特徵選擇
(2)C4.5:使用信息增益率作為特徵選擇
(3)CART:使用GINI系數作為特徵選擇
具體選擇的方法網上一大把,在這里我提供幾個鏈接,不細講。
但,不僅僅如此。
決策樹作為嵌入型特徵選擇技術結合了特徵選擇和分類演算法,根據特徵選擇如何生成分類模型也是決策樹的一部分。
其生成過程基本如下:
根據這三個步驟,可以確定決策樹由:(1)特徵選擇;(2)生成方法;(3)剪枝,組成。
決策樹中學習演算法與特徵選擇的關系如下圖所示:
原始特徵集合T:就是包含收集到的原始數據所有的特徵,例如:麻瓜銀行收集到與是否具有償還能力的所有特徵,如:是否結婚、是否擁有100w的房產、是否擁有汽車、是否有小孩、月收入是否>10k等等。
中間的虛線框就是特徵選擇過程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系數。
其中評價指標(如:信息增益)就是對特徵的要求,特徵需要滿足這種條件(一般是某個閾值),才能被選擇,而這一選擇過程嵌入在學習演算法中,最終被選擇的特徵子集也歸到學習演算法中去。
這就是抽象的決策樹生成過程,不論哪種演算法都是將這一抽象過程的具體化。
其具體演算法我將留在下一篇文章來講解。
而決策樹的剪枝,其實用得不是很多,因為很多情況下隨機森林能解決決策樹帶來的過擬合問題,因此在這里也不講了。
決策樹的優化主要也是圍繞決策樹生成過程的三個步驟來進行優化的。
樹型結構,可想而知,演算法效率決定於樹的深度,優化這方面主要從特徵選擇方向上優化。
提高分類性能是最重要的優化目標,其主要也是特徵選擇。
面對過擬合問題,一般使用剪枝來優化,如:李國和基於決策樹生成及剪枝的數據集優化及其應用。
同時,決策樹有很多不足,如:多值偏向、計算效率低下、對數據空缺較為敏感等,這方面的優化也有很多,大部分也是特徵選擇方向,如:陳沛玲使用粗糙集進行特徵降維。
由此,決策樹的優化方向大多都是特徵選擇方向,像ID3、C4.5、CART都是基於特徵選擇進行優化。
參考文獻
統計學習方法-李航
特徵選擇方法綜述-李郅琴
決策樹分類演算法優化研究_陳沛玲
基於決策樹生成及剪枝的數據集優化及其應用-李國和
『陸』 決策樹的訓練復雜度
並不是很復雜。
決策樹模型因為其特徵預處理簡單、易於集成學習、良好的擬合能力及解釋性,是應用最廣泛的機器學習模型之一。
決策樹演算法在決策領域有著廣泛的應用,比如個人決策、公司管理決策等。演算法邏輯模型以「樹形結構」呈現,因此它比較容易理解,並不是很復雜,我們可以清楚地掌握分類過程中的每一個細節。
控制決策樹的復雜度:
若所有葉結點都是純的,模型過於復雜,訓練集擬合度過高,出現過擬合。
兩種方法防治過擬合:
預剪枝:限制樹的生長到某一次停止。限制樹的最大深度、葉結點的最大數目…
後剪枝:生成純樹以後把信息少的結點刪掉。
常見決策樹分類演算法
1、CLS演算法
最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷地從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
2、ID3演算法
對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。
ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3、C4.5演算法
基於ID3演算法的改進,主要包括:
使用信息增益率替換了信息增益下降度作為屬性選擇的標准。
在決策樹構造的同時進行剪枝操作。
避免了樹的過度擬合情況。
可以對不完整屬性和連續型數據進行處理。
使用k交叉驗證降低了計算復雜度。
針對數據構成形式,提升了演算法的普適性。
4、SLIQ演算法
該演算法具有高可擴展性和高可伸縮性特質,適合對大型數據集進行處理。
5、CART演算法
CART是一種基於二分遞歸分割技術的演算法。該演算法是將當前的樣本集,分為兩個樣本子集,這樣做就使得每一個非葉子節點最多隻有兩個分支。因此,使用CART演算法所建立的決策樹是一棵二叉樹,樹的結構簡單,與其它決策樹演算法相比,由該演算法生成的決策樹模型分類規則較少。
『柒』 常見決策樹分類演算法都有哪些
在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。
『捌』 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求
『玖』 機器學習故事匯-決策樹演算法
機器學習故事匯-決策樹演算法
【咱們的目標】系列演算法講解旨在用最簡單易懂的故事情節幫助大家掌握晦澀無趣的機器學習,適合對數學很頭疼的同學們,小板凳走起!
決策樹模型是機器學習中最經典的演算法之一啦,用途之廣泛我就不多吹啦,其實很多機器學習演算法都是以樹模型為基礎的,比如隨機森林,Xgboost等一聽起來就是很牛逼的演算法(其實用起來也很牛逼)。
首先我們來看一下在上面的例子中我想根據人的年齡和性別(兩個特徵)對5個人(樣本數據)進行決策,看看他們喜不喜歡玩電腦游戲。首先根據年齡(根節點)進行了一次分支決策,又對左節點根據性別進行了一次分支決策,這樣所有的樣本都落到了最終的葉子節點,可以把每一個葉子節點當成我們最終的決策結果(比如Y代表喜歡玩游戲,N代表不喜歡玩游戲)。這樣我們就通過決策樹完成了非常簡單的分類任務!
再來看一下樹的組成,主要結構有根節點(數據來了之後首先進行判斷的特徵),非葉子節點(中間的一系列過程),葉子節點(最終的結果),這些都是我們要建立的模塊!
在決策中樹中,我們剛才的喜歡玩電腦游戲的任務看起來很簡單嘛,從上往下去走不就OK了嗎!但是難點在於我們該如何構造這棵決策樹(節點的選擇以及切分),這個看起來就有些難了,因為當我們手裡的數據特徵比較多的時候就該猶豫了,到底拿誰當成是根節點呢?
這個就是我們最主要的問題啦,節點究竟該怎麼選呢?不同的位置又有什麼影響?怎麼對特徵進行切分呢?一些到這,我突然想起來一個段子,咱們來樂呵樂呵!
武林外傳中這個段子夠我笑一年的,其實咱們在推導機器學習演算法的時候,也需要這么去想想,只有每一步都是有意義的我們才會選擇去使用它。回歸正題,我們選擇的根節點其實意味著它的重要程度是最大的,相當於大當家了,因為它會對數據進行第一次切分,我們需要把最重要的用在最關鍵的位置,在決策樹演算法中,為了使得演算法能夠高效的進行,那麼一開始就應當使用最有價值的特徵。
接下來咱們就得嘮嘮如何選擇大當家了,我們提出了一個概念叫做熵(不是我提出的。。。穿山甲說的),這里並不打算說的那麼復雜,一句話解釋一下,熵代表你經過一次分支之後分類的效果的好壞,如果一次分支決策後都屬於一個類別(理想情況下,也是我們的目標)這時候我們認為效果很好嘛,那熵值就很低。如果分支決策後效果很差,什麼類別都有,那麼熵值就會很高,公式已經給出,log函數推薦大家自己畫一下,然後看看概率[0,1]上的時候log函數值的大小(你會豁然開朗的)。
不確定性什麼時候最大呢?模稜兩可的的時候(就是你猶豫不決的時候)這個時候熵是最大的,因為什麼類別出現的可能性都有。那麼我們該怎麼選大當家呢?(根節點的特徵)當然是希望經過大當家決策後,熵值能夠下降(意味著類別更純凈了,不那麼混亂了)。在這里我們提出了一個詞叫做信息增益(就當是我提出的吧。。。),信息增益表示經過一次決策後整個分類後的數據的熵值下降的大小,我們希望下降越多越好,理想情況下最純凈的熵是等於零的。
一個栗子:准備一天一個哥們打球的時候,包括了4個特徵(都是環境因素)以及他最終有木有去打球的數據。
第一個問題:大當家該怎麼選?也就是我們的根節點用哪個特徵呢?
一共有4個特徵,看起來好像用誰都可以呀,這個時候就該比試比試了,看看誰的能力強(使得熵值能夠下降的最多)
在歷史數據中,首先我們可以算出來當前的熵值,計算公式同上等於0.940,大當家的競選我們逐一來分析,先看outlook這個特徵,上圖給出了基於天氣的劃分之後的熵值,計算方式依舊同上,比如outlook=sunny時,yes有2個,no有三個這個時候熵就直接將2/5和3/5帶入公式就好啦。最終算出來了3種情況下的熵值。
再繼續來看!outlook取不同情況的概率也是不一樣的,這個是可以計算出來的相當於先驗概率了,直接可以統計出來的,這個也需要考慮進來的。然後outlook競選大當家的分值就出來啦(就是信息增益)等於0.247。同樣的方法其餘3個特徵的信息增益照樣都可以計算出來,誰的信息增益多我們就認為誰是我們的大當家,這樣就完成了根節點的選擇,接下來二當家以此類推就可以了!
我們剛才給大家講解的是經典的ID3演算法,基於熵值來構造決策樹,現在已經有很多改進,比如信息增益率和CART樹。簡單來說一下信息增益率吧,我們再來考慮另外一個因素,如果把數據的樣本編號當成一個特徵,那麼這個特徵必然會使得所有數據完全分的開,因為一個樣本只對應於一個ID,這樣的熵值都是等於零的,所以為了解決這類特徵引入了信息增益率,不光要考慮信息增益還要考慮特徵自身的熵值。說白了就是用 信息增益/自身的熵值 來當做信息增益率。
我們剛才討論的例子中使用的是離散型的數據,那連續值的數據咋辦呢?通常我們都用二分法來逐一遍歷來找到最合適的切分點!
下面再來嘮一嘮決策樹中的剪枝任務,為啥要剪枝呢?樹不是好好的嗎,剪個毛線啊!這個就是機器學習中老生常談的一個問題了,過擬合的風險,說白了就是如果一個樹足夠龐大,那麼所有葉子節點可能只是一個數據點(無限制的切分下去),這樣會使得我們的模型泛化能力很差,在測試集上沒辦法表現出應有的水平,所以我們要限制決策樹的大小,不能讓枝葉太龐大了。
最常用的剪枝策略有兩種:
(1)預剪枝:邊建立決策樹邊開始剪枝的操作
(2)後剪枝:建立完之後根據一定的策略來修建
這些就是我們的決策樹演算法啦,其實還蠻好的理解的,從上到下基於一種選擇標准(熵,GINI系數)來找到最合適的當家的就可以啦!
『拾』 決策樹演算法總結
目錄
一、決策樹演算法思想
二、決策樹學習本質
三、總結
一、決策樹(decision tree)演算法思想:
決策樹是一種基本的分類與回歸方法。本文主要討論分類決策樹。決策樹模型呈樹形結構,在分類問題中,表示基於特徵對實例進行分類的過程。 它可以看做是if-then的條件集合,也可以認為是定義在特徵空間與類空間上的條件概率分布 。決策樹由結點和有向邊組成。結點有兩種類型:內部結點和葉結點,內部結點表示一個特徵或屬性,葉結點表示一個類。(橢圓表示內部結點,方塊表示葉結點)
決策樹與if-then規則的關系
決策樹可以看做是多個if-then規則的集合。將決策樹轉換成if-then規則的過程是:由決策樹的根結點到葉結點的每一條路徑構建一條規則;路徑上的內部結點的特徵對應著規則的條件,而葉結點的類對應著規則的結論。決策樹的路徑或其對應的if-then規則集合具有一個重要的性質:互斥且完備。這就是說,每一個實例都被一條路徑或一條規則所覆蓋,且只被一條路徑或一條規則所覆蓋。這里的覆蓋是指實例的特徵與路徑上的特徵一致或實例滿足規則的條件。
決策樹與條件概率分布的關系
決策樹還表示給定特徵條件下類的條件概率分布。這一條件概率分布定義在特徵空間的一個劃分上。將特徵空間劃分為互不相交的單元或區域,並在每個單元定義一個類的概率分布,就構成一個條件概率分布。決策樹的一條路徑對應於劃分中的一個單元。決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。
決策樹模型的優點
決策樹模型具有可讀性,分類速度快。學習時,利用訓練數據,根據損失函數最小化原則建立決策樹模型;預測時,對新的數據,利用決策樹模型進行分類 。
二、決策樹學習本質:
決策樹學習是從訓練數據集中歸納一組分類規則、與訓練數據集不相矛盾的決策樹可能有多個,也可能一個沒有。我們需要訓練一個與訓練數據矛盾較小的決策樹,同時具有很好的泛化能力。從另一個角度看 決策樹學習是訓練數據集估計條件概率模型 。基於特徵空間劃分的類的條件概率模型有無窮多個。我們選擇的條件概率模型應該是不僅對訓練數據有很好的擬合,而且對未知數據有很好的預測。 決策樹的學習使用損失函數表示這一目標,通常的損失函數是正則化的極大似然函數。決策樹的學習策略是以損失函數為目標函數的最小化。當損失函數確定後,決策樹學習問題變為損失函數意義下選擇最優決策樹的問題。這一過程通常是一個遞歸選擇最優特徵,並根據特徵對訓練數據進行分割,使得對各個子數據集有一個最好分類的過程。這一過程對應著特徵選擇、決策樹的生成、決策樹的剪枝。
特徵選擇 : 在於選擇對訓練數據具有分類能力的特徵,這樣可以提高決策樹的學習效率。
決策樹的生成 : 根據不同特徵作為根結點,劃分不同子結點構成不同的決策樹。
決策樹的選擇 :哪種特徵作為根結點的決策樹信息增益值最大,作為最終的決策樹(最佳分類特徵)。
信息熵 : 在資訊理論與概率統計中,熵是表示隨機變數不確定性的度量。設X是一個取有限個值的離散隨機變數,其概率分布為P(X= ) = ,i=1,2,3...n,則隨機變數X的熵定義為
H(X) = — ,0 <= H(X) <= 1,熵越大,隨機變數的不確定性就越大。
條件熵(Y|X) : 表示在已知隨機變數X的條件下隨機變數Y的不確定性。
信息增益 : 表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度。
信息增益 = 信息熵(父結點熵 ) — 條件熵(子結點加權熵)
三、 總結 :
優點
1、可解釋性高,能處理非線性的數據,不需要做數據歸一化,對數據分布沒有偏好。
2、可用於特徵工程,特徵選擇。
3、可轉化為規則引擎。
缺點
1、啟發式生成,不是最優解。
2、容易過擬合。
3、微小的數據改變會改變整個數的形狀。
4、對類別不平衡的數據不友好。