⑴ 什麼是廣度優先搜索
寬度優先,搜索演算法是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,在說單元最短路徑演算法和論文最小生成數算用了和寬度優先搜索類似的思想,他並不考慮結果的可能位置,徹底的搜索整張圖,直到找到結果為止
⑵ 深度優先搜索法和廣度優先搜索法
深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。在深度優先搜索中,對於最新發現的結點,如果它還有以此為起點而未搜過的邊,就沿著邊繼續搜索下去。當結點v的所有邊都已被探尋過,搜索將回溯到發現結點v有那條邊的始結點。這一過程一直進行到已發現從源結點可達的所有結點為止。如果還存在未被發現的結點,則選擇其中一個作為源結點並重復以上過程,整個過程反復進行直到所有結點都被發現為止。
深度優先搜索基本演算法如下{遞歸演算法}:
PROCEDURE dfs_try(i);
FOR i:=1 to maxr DO
BEGIN
IF 子結點 mr 符合條件 THEN
BEGIN
產生的子結點mr入棧;
IF 子結點mr是目標結點
THEN 輸出
ELSE dfs_try(i+1);
棧頂元素出棧;
END;
END; 寬度優先搜索演算法(又稱廣度優先搜索演算法)是最簡單的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。Dijksta單源最短路徑演算法和Prim最小生成樹演算法都採用了與寬度優先搜索類似的思想。
寬度優先搜索的核心思想是:從初始結點開始,應用算符生成第一層結點,檢查目標結點是否在這些後繼結點中,若沒有,再用產生式規則將所有第一層的結點逐一擴展,得到第二層結點,並逐一檢查第二層結點中是否包含目標結點。若沒有,再用算符逐一擴展第二層所有結點……,如此依次擴展,直到發現目標結點為止。
寬度優先搜索基本演算法如下:
list[1]:=source; {加入初始結點,list為待擴展結點的表}
head:=0; {隊首指針}
foot:=1; {隊尾指針}
REPEAT
head:=head+1;
FOR x:=1 to 規則數 DO
BEGIN
根據規則產生新結點nw;
IF not_appear(nw,list) THEN {若新結點隊列中不存在,則加到隊尾}
BEGIN
foot:=foot+1;
list[foot]:=nw;
list[foot].father:=head;
IF list[foot]=目標結點 THEN 輸出;
END;
END;
UNTIL head>foot; {隊列為空表明再無結點可擴展}
⑶ 什麼是寬度優先搜索,它的主要特徵是
關於寬度優先搜索的具體介紹如下,僅供參考,希望對你有幫助!
1.寬度優先搜索演算法(又稱廣度優先搜索演算法)是最簡單的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。Dijksta單源最短路徑演算法和Prim最小生成樹演算法都採用了與寬度優先搜索類似的思想。
2.寬度優先搜索的核心思想是:從初始結點開始,應用算符生成第一層結點,檢查目標結點是否在這些後繼結點中,若沒有,再用產生式規則將所有第一層的結點逐一擴展,得到第二層結點,並逐一檢查第二層結點中是否包含目標結點。若沒有,再用算符逐一擴展第二層所有結點……,如此依次擴展,直到發現目標結點為止 。
3.另外它也叫廣度優先搜索演算法,英語:Breadth-First-Search,縮寫為BFS,也譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。
⑷ 常見演算法5、廣度優先搜索 Breadth-First Search
1、定義
廣度優先搜索 (Breadth-First Search)是最簡便的圖的搜索演算法之一,又稱 寬度優先搜索 ,這一演算法也是很多重要的圖演算法的原型。廣度優先搜索屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位置,徹底地搜索整張圖,直到找到結果為止。
2、應用
廣度優先搜索被用於解決 最短路徑問題(shortest-path problem) 。
廣度優先搜索讓你能夠找出兩樣東西之間的最短距離,不過最短距離的含義有很多!使用廣度優先搜索可以:
3、圖簡介
既然廣度優先搜索是作用於圖的一種演算法,這里對圖作一個簡單的介紹,先不深入了解。
圖由 節點 和 邊 組成。一個節點可能與多個節點相連,這些節點被稱為鄰居。
廣度優先演算法的核心思想是:從初始節點開始,應用算符生成第一層節點,檢查目標節點是否在這些後繼節點中,若沒有,再用產生式規則將所有第一層的節點逐一擴展,得到第二層節點,並逐一檢查第二層節點中是否包含目標節點。若沒有,再用算符逐一擴展第二層的所有節點……,如此依次擴展,檢查下去,直到發現目標節點為止。即
廣度優先搜索使用隊列(queue)來實現,整個過程也可以看做一個倒立的樹形。
例:假如你需要在你的人際關系網中尋找是否有職業為醫生的人,圖如下:
而使用廣度優先搜索工作原理大概如下 :
1、Python 3 :
2、php :
1、《演算法圖解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue類: https://www.php.net/manual/zh/class.splqueue.php
⑸ 深度優先和廣度優先 的區別 ,用法。
1、主體區別
深度優先搜索是一種在開發爬蟲早期使用較多的方法。它的目的是要達到被搜索結構的葉結點(即那些不包含任何超鏈的HTML文件)。
寬度優先搜索演算法(又稱廣度優先搜索)是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。
2、演算法區別
深度優先搜索是每次從棧中彈出一個元素,搜索所有在它下一級的元素,把這些元素壓入棧中。並把這個元素記為它下一級元素的前驅,找到所要找的元素時結束程序。
廣度優先搜索是每次從隊列的頭部取出一個元素,查看這個元素所有的下一級元素,把它們放到隊列的末尾。並把這個元素記為它下一級元素的前驅,找到所要找的元素時結束程序。
3、用法
廣度優先屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位置,徹底地搜索整張圖,直到找到結果為止。
深度優先即在搜索其餘的超鏈結果之前必須先完整地搜索單獨的一條鏈。深度優先搜索沿著HTML文件上的超鏈走到不能再深入為止,然後返回到某一個HTML文件,再繼續選擇該HTML文件中的其他超鏈。
(5)廣度有限搜索演算法的原理擴展閱讀:
實際應用
BFS在求解最短路徑或者最短步數上有很多的應用,應用最多的是在走迷宮上,單獨寫代碼有點泛化,取來自九度1335闖迷宮一例說明,並給出C++/Java的具體實現。
在一個n*n的矩陣里走,從原點(0,0)開始走到終點(n-1,n-1),只能上下左右4個方向走,只能在給定的矩陣里走,求最短步數。n*n是01矩陣,0代表該格子沒有障礙,為1表示有障礙物。
int mazeArr[maxn][maxn]; //表示的是01矩陣int stepArr = {{-1,0},{1,0},{0,-1},{0,1}}; //表示上下左右4個方向,int visit[maxn][maxn]; //表示該點是否被訪問過,防止回溯,回溯很耗時。核心代碼。基本上所有的BFS問題都可以使用類似的代碼來解決。
⑹ bfs演算法是什麼
廣度優先搜索演算法(英語:Breadth-First Search,縮寫為BFS),又譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。
簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。
作法
BFS是一種暴力搜索演算法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能地址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
從演算法的觀點,所有因為展開節點而得到的子節點都會被加進一個先進先出的隊列中。
一般的實現里,其鄰居節點尚未被檢驗過的節點會被放置在一個被稱為open的容器中(例如隊列或是鏈表),而被檢驗過的節點則被放置在被稱為closed的容器中。
(6)廣度有限搜索演算法的原理擴展閱讀:
廣度優先搜索演算法的應用
廣度優先搜索演算法能用來解決圖論中的許多問題,例如:
1、查找圖中所有連接組件(ConnectedComponent)。一個連接組件是圖中的最大相連子圖。
2、查找連接組件中的所有節點。
3、查找非加權圖中任兩點的最短路徑。
4、測試一圖是否為二分圖。
5、(Reverse)Cuthill–McKee演算法
⑺ 詳細介紹廣度優先搜索的實現,原理,c++程序
寬度優先搜索演算法(又稱廣度優先搜索)是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。
已知圖G=(V,E)和一個源頂點s,寬度優先搜索以一種系統的方式探尋G的邊,從而「發現」s所能到達的所有頂點,並計算s到所有這些頂點的距離(最少邊數),該演算法同時能生成一棵根為s且包括所有可達頂點的寬度優先樹。對從s可達的任意頂點v,寬度優先樹中從s到v的路徑對應於圖G中從s到v的最短路徑,即包含最小邊數的路徑。該演算法對有向圖和無向圖同樣適用。
之所以稱之為寬度優先演算法,是因為演算法自始至終一直通過已找到和未找到頂點之間的邊界向外擴展,就是說,演算法首先搜索和s距離為k的所有頂點,然後再去搜索和S距離為k+l的其他頂點。
為了保持搜索的軌跡,寬度優先搜索為每個頂點著色:白色、灰色或黑色。演算法開始前所有頂點都是白色,隨著搜索的進行,各頂點會逐漸變成灰色,然後成為黑色。在搜索中第一次碰到一頂點時,我們說該頂點被發現,此時該頂點變為非白色頂點。因此,灰色和黑色頂點都已被發現,但是,寬度優先搜索演算法對它們加以區分以保證搜索以寬度優先的方式執行。若(u,v)∈E且頂點u為黑色,那麼頂點v要麼是灰色,要麼是黑色,就是說,所有和黑色頂點鄰接的頂點都已被發現。灰色頂點可以與一些白色頂點相鄰接,它們代表著已找到和未找到頂點之間的邊界。
在寬度優先搜索過程中建立了一棵寬度優先樹,起始時只包含根節點,即源頂點s.在掃描已發現頂點u的鄰接表的過程中每發現一個白色頂點v,該頂點v及邊(u,v)就被添加到樹中。在寬度優先樹中,我們稱結點u 是結點v的先輩或父母結點。因為一個結點至多隻能被發現一次,因此它最多隻能有--個父母結點。相對根結點來說祖先和後裔關系的定義和通常一樣:如果u處於樹中從根s到結點v的路徑中,那麼u稱為v的祖先,v是u的後裔。
⑻ 廣度優先搜索怎麼保證最優解啊(新手不懂,求指導)
盡可能廣的遍歷圖的結點,類似於樹的層序遍歷。遍歷順序不唯一,但確定的遍歷順序,對應確定的生成樹。
⑼ 廣度優先搜索有什麼難點
廣度優先搜索難點在於每一種演算法的不同,樹的遍歷。
擴展知識:
廣度優先搜索演算法又譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。
廣度優先搜索演算法主要有四個特性:
空間復雜度:由於對空間的大量需求,因此BFS並不適合解非常大的問題,對於類似的問題,應用IDDFS已達節省空間的效果。
時間復雜度:最差情形下,BFS必須查找所有到可能節點的所有路徑。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
最佳解:若所有邊的長度相等,廣度優先搜索演算法是最佳解——亦即它找到的第一個解,距離根節點的邊數目一定最少;但對一般的圖來說,BFS並不一定回傳最佳解。
⑽ 關於廣度優先搜索演算法
廣度優先搜索演算法,是按層遍歷各個結點,以求出最短或最優的解,
常用於計算路徑的最短距離,和最佳通路。
例如:迷宮的最短路徑計算,推箱子的移動最小步數等小游戲,都是按廣度搜索來進行的。
這個演算法是教程中很經典的,有很多例子和代碼。你可以好好研究!
如下是一段迷宮的最佳路徑求解演算法。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int dx[4]={-1,0,1,0};
const int dy[4]={0,1,0,-1};
int maze[5][5],prev[5][5];
int que[32];
int qn;
void print(int x,int y)
{
if(prev[x][y]!=-2)
{
print(prev[x][y]>>3,prev[x][y]&7);
}
printf("(%d, %d)\n",x,y);
}
int main()
{
int i,j,cx,cy,nx,ny;
for(i=0;i<5;i++)
{
for(j=0;j<5;j++)
{
scanf("%d",&maze[i][j]);
}
}
memset(prev,-1,sizeof(prev));
prev[0][0]=-2;
que[0]=0;
qn=1;
for(i=0;i<qn;i++)
{
cx=que[i]>>3;
cy=que[i]&7;
for(j=0;j<4;j++)
{
nx=cx+dx[j];
ny=cy+dy[j];
if((nx>=0)&&(nx<5)&&(ny>=0)&&(ny<5)&&(maze[nx][ny]==0)&&(prev[nx][ny]==-1))
{
prev[nx][ny]=(cx<<3)|cy;
que[qn++]=(nx<<3)|ny;
if((nx==4)&&(ny==4))
{
print(nx,ny);
return 0;
}
}
}
}
return 0;
}