編譯這個難啊,還要網速允許
你可以編譯
gentoo單純的自己編譯一個不屬於任何現在的版本可能不是一
般人可以做到的
⑵ 32位系統如何編譯android4.4
方法步驟:第一步:編譯Android 源代碼
第二部:安裝jdk
第三部:安裝編譯所需的工具
第四步:設置高速緩存加快編譯速度
編譯系統的要求
第一步:編譯Android 源代碼,Android官方推薦64位的ubuntu系統,最好是10.04的,對於10.10、11.10、12.04版本的ubuntu系統也是可以,但是小編一直習慣使用10.04的,所以幾年來一直沿用至今
請不要使用32位的Ubuntu系統,更不要使用10.04以下的ubuntu系統,不然編譯會出現很多都問題,會浪費更多的時間,有的比較難解決,對於新人來說,還不如重新安裝一個64位的ubuntu系統
下面小編來說說怎麼樣查看當前安裝好的ubuntu系統是多少位的
按照下圖所示的方法打開終端,然後輸入命令並執行 uname -ar,在最後輸出的信息中如果有amd64或者 x86_64 字樣,那麼就說明是64位的系統了,否則就是32位的系統了
android4.4源碼編譯環境搭建
第二部:安裝jdk
1jdk的安裝,雖然Android官方還是有介紹,現在jdk的安裝已經不支持使用添加源,然後用命令安裝了,只能取java官網下載jdk,然後安裝,然後將jdk的路勁添加到環境變數中,具體的安裝和添加變數的方法,可以查看本文參考資料中的文檔介紹,這里就不過多說明了
另外需說明的是,對於2.3版本以後的Android,需要使用jdk6,即jdk1.6,而不要使用jdk1.7的
android4.4源碼編譯環境搭建
2對於安裝好的jdk,並且添加了環境變數,我們可以輸入並執行命令java -version 來查看jdk版本,若是有類似下面的信息輸入,那麼說明jdk安裝成功了
android4.4源碼編譯環境搭建
END
第三部:安裝編譯所需的工具
1對於10.04的系統,我們只需要安裝下面這些軟體工具就可以了,直接復制到終端中,然後回車執行安裝就ok,安裝前保持電腦正常連接網路
sudo apt-get install git-core gnupg flex bison gperf build-essential \
zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs \
x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev \
libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown \
libxml2-utils xsltproc
android4.4源碼編譯環境搭建
2對於10.10的ubuntu系統,需要先安裝下面的工具軟體,直接輸入執行下面的命令就可以安裝:
sudo apt-get install git-core gnupg flex bison gperf build-essential \
zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs \
x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev \
libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown \
libxml2-utils xsltproc
android4.4源碼編譯環境搭建
3之後使用下面的命令做一個軟鏈接文件:
sudo ln -s /usr/lib32/mesa/libGL.so.1 /usr/lib32/mesa/libGL.so
android4.4源碼編譯環境搭建
4對於11.10的ubuntu系統,需要先安裝下面的工具,輸入並執行下面的命令:
sudo apt-get install git-core gnupg flex bison gperf build-essential \
zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs \
x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev \
libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown \
libxml2-utils xsltproc
android4.4源碼編譯環境搭建
5然後再安裝這個對於11.10系統特別需要的工具
sudo apt-get install libx11-dev:i386
android4.4源碼編譯環境搭建
第四步:設置高速緩存加快編譯速度
設置告訴緩存可以加快我們的編譯速度,對於配置不是很高的電腦,最好是進行這個設置,這樣可以為我們節約很多都時間
先用vi或者gedit軟體打開宿主目錄下的.bashrc文件,然後在文件的最後添加:
export USE_CCACHE=1
之後保存退出,重新登陸系統,使設置生效
android4.4源碼編譯環境搭建
2在終端中,切換到源碼根目錄中,然後執行下面的命令,設置ccache的大小
prebuilts/misc/linux-x86/ccache/ccache -M 50G
其實ccache就是一個執行文件,後面的-M和50G是傳遞給ccache的參數,表示設置50G的緩存空間,這個大小可以根據我們的時間需要來修改
注意事項:
如果覺得小編的經驗還不錯,請點擊右邊的「關注TA」和「投票TA」,以方便隨時學習了解其他相關經驗
⑶ 如何編譯Linux操作系統的源代碼
首先uname
-r看一下你當前的linux內核版本
1、linux的源碼是在/usr/src這個目錄下,此目錄有你電腦上各個版本的linux內核源代碼,用uname
-r命令可以查看你當前使用的是哪套內核,你把你下載的內核源碼也保存到這個目錄之下。
2、配置內核
make
menuconfig,根據你的需要來進行選擇,設置完保存之後會在當前目錄下生成.config配置文件,以後的編譯會根據這個來有選擇的編譯。
3、編譯,依次執行make、make
bzImage、make
moles、make
moles
4、安裝,make
install
5、.創建系統啟動映像,到
/boot
目錄下,執行
mkinitramfs
-o
initrd.img-2.6.36
2.6.36
6、修改啟動項,因為你在啟動的時候會出現多個內核供你選擇,此事要選擇你剛編譯的那個版本,如果你的電腦沒有等待時間,就會進入默認的,默認的那個取決於
/boot/grub/grub.cfg
文件的設置,找到if
[
"${linux_gfx_mode}"
!=
"text"
]這行,他的第一個就是你默認啟動的那個內核,如果你剛編譯的內核是在下面,就把代表這個內核的幾行代碼移到第一位如:
menuentry
'Ubuntu,
with
Linux
3.2.0-35-generic'
--class
ubuntu
--class
gnu-linux
--class
gnu
--class
os
{
recordfail
gfxmode
$linux_gfx_mode
insmod
gzio
insmod
part_msdos
insmod
ext2
set
root='(hd0,msdos1)'
search
--no-floppy
--fs-uuid
--set=root
9961c170-2566-41ac-8155-18f231c1bea5
linux/boot/vmlinuz-3.2.0-35-generic
root=UUID=9961c170-2566-41ac-8155-18f231c1bea5
ro
quiet
splash
$vt_handoff
initrd/boot/initrd.img-3.2.0-35-generic
}
當然你也可以修改
set
default="0"來決定用哪個,看看你的內核在第幾位,default就填幾,不過我用過這種方法,貌似不好用。
重啟過後你編譯的內核源碼就成功地運行了,如果出現問題,比如滑鼠不能用,usb不識別等問題就好好查查你的make
menuconfig這一步,改好後就萬事ok了。
最後再用uname
-r看看你的linux內核版本。是不是你剛下的那個呢!有沒有成就感?
⑷ 如何編譯一個精簡的Android系統
本次試驗使用的android源碼是4.2,編譯的架構是mini-mips。
一、所做的工作
1、修改build/target/proct/mini.mk,去掉一些不必要的模塊(例如Phone、DownloadManager等)
2、修改SystemServer.java,屏蔽一些service,讓系統能夠啟動起來(例如,Location Manager、Telephony Registry)
3、修改dalvik/vm/native/dalvik_system_Zygote.cpp,注釋掉因為檢查不到外部存儲而導致dalvik abort的地方 (這是googel的一個bug,在2013年1月份已解決,如果用這以後的代碼不用修改此處)
4、修改WindowManagerService.java,把發送BOOT_TIMEOUT消息的時間改為0(之前為30秒)
二、系統優化後的效果(驗證工作均在mips模擬器上進行)
1、節省運行內存,下面是全編譯與mini編譯的內存使用狀態的對比
1)full build
MemTotal: 499360 kB
MemFree: 242064 kB
2)mini build
MemTotal: 499360 kB
MemFree: 395192 kB
2、縮短開機啟動時間
在虛擬機上的啟動時間
1)full build-29秒
2)mini build-14秒
3、只啟動home程序,其餘的應用程序均被移除
三、保留android的開發環境
1、adb,ddms,apkinstall等,都能正常工作
2、在eclipse中編寫的android應用程序能夠運行在該mini-android之上
四、開機自動啟動指定應用程序
本次測試使用Gallery.apk應用程序,修改其源碼後可以實現隨系統的啟動而自動啟動的功能。
⑸ 如何用gentoo交叉編譯一個基本系統
嵌入式系統的編譯環境
為某個平台開發軟體,首先需要一個編譯環境。一般來說,編譯環境包括三部分:工具 鏈/運行環境/編譯方法。對於嵌入式系統來說,常見的編譯環境有三種:
本地環境。如很流行的Ubuntu for ARM,利用官方製作好的目標機鏡像(通常包含了 編譯環境),直接在目標機上編譯/安裝軟體,與PC機開發完全一樣。這種方法簡單省 事。缺點也顯而易見,編譯速度慢,耗時長,特別是較大的軟體包(如xbmc)的時候, 程序員不是停下來喝杯咖啡就可以收攤,恐怕得打場通宵dota後才能看到結果 了…(或許distcc能有所改善)
虛擬環境。在PC上建立目標機的虛擬環境,如QEMU-ARM,然後chroot到虛擬環境 中編譯/安裝軟體。這種方法利用了PC的處理能力,速度比本地環境要快得多,但 QEMU並不能完美的模擬目標機環境,如不支持某些系統調用等,這可能導致它不能 正確的編譯某些軟體。
交叉編譯。為目標機交叉編譯軟體,這是最常規的辦法,也是上面兩種方法實現的基 礎。說交叉編譯是「臟活」,是因為需要手工解決軟體包的所有依賴問題,手工編譯 每一個軟體包,並且解決軟體包對目標機兼容問題… 看網上鋪天蓋地關於求教/指導 某個軟體包如何正確交叉編譯就知道,有多少程序員在被它虐?
gentoo下的交叉編譯
gentoo是一個metadistribution,從源代碼構建整個系統,同時支持很多不同的體 系如alpha/arm/hppa/ppc/sh/sparc/s390等,也為交叉編譯提供了便利的工具,這是 其它二進制發行版沒有辦法比擬的(scratchbox也顯得弱爆了)。
gentoo下的交叉編譯通過crossdev和portage來實現。portage帶來的好處是自 動解決依賴和自動升級更新系統,跟本機環境一樣。
製作工具鏈
crossdev用來製作交叉工具鏈,並且還提供了交叉編譯環境下的emerge的輔助腳本。如 下編譯arm平台的工具鏈:
$ sudo crossdev -t arm-supertux-linux-gnueabi
這樣,crossdev最終製作了符合「gentoo規范」的arm交叉編譯器。
運行環境
crossdev生成/usr/arm-supertux-linux-gnueabi/目錄作為目標系統 $buildroot。編譯後生成的目標會被emerge到$buildroot,編譯時依賴的環境(如 鏈接庫/頭文件/pkgconfig等)也都在$buildroot。
交叉編譯
有了工具鏈/運行環境,使用的crossdev封裝過的emerge,就可以自由的emerge了。 如交叉編譯bash:
$ sudo emerge-arm-supertux-linux-gnueabi -avu bash
porage會自動把bash的依賴如ncurses/readline一起emerge到$buildroot。 交叉編譯就是變得如此簡單…
碰到的問題
站在巨人的肩膀上可以看的更遠,前提是我們先要爬上巨人的肩膀。portage是一個快 速更新迭代的系統,並不完美,維護者沒有辦法測試每個軟體包的所有兼容性。所以, 當你想安裝一個圖形環境如$emerge -avu enlightenment時,很可能會出現錯誤。但 portage提供了細粒度的控制幫助解決這樣的問題。下面是我碰到過一些情形和解決方 法:
由於軟體包的環境變數引起的問題,如鏈接庫指向了/usr/bin,而非 $buildroot。可以配置$buldroot/etc/portage/env/目錄下相應的文 件,portage會自動source該文件,從而改變編譯時的環境。
portage沒有包含該軟體或portage自身的bug引起,如默認使能了某個在目標機 平台不能使用的特性。建立一個針對目標機的overlay,自己編寫相應軟體包的 ebuild文件指導portage進行交叉編譯。
當某個軟體包分階段編譯時,如perl編譯時先生成miniperl,通過miniperl最 後生成perl目標映像。由於miniperl被交叉編譯器生成目標機的映像,正常情況 下不能主機環境中繼續運行生成最終的目標映像。這就要藉助qemu-arm+binfmt模 擬目標機環境,讓miniperl在主機環境中也能無縫的運行。
從形式上看,處理上面幾種情況,也是「臟活」。不僅需要了解該軟體包的編譯環境, 還需要了解portage的原理,還要知道ebuild的書寫語法。但是,與傳統的交叉編譯 方式比起來,這是一勞永逸的工作,別人使用我的運行環境和overlay,即不需再做什 么就能生成最終的目標機系統。