❶ lua語言a星尋路演算法路徑怎麼平滑
在項目中遇到了自動尋路的需求,於是決定開始學習一下A星,對於A星我也沒有深究,只能說是勉強搞定了需求,在這和大家分享一下,相互進步,
A星有個公式 f(x) = g(x) + h(x)
,搞清楚這個公式就好辦了,f(x)就是當前位置到下一個位置的總價值,g(x)表示實際價,這是說這一部分代價是確定的,h(x)表示估價值,就是說我
從下一個位置到到終點的代價是未知的,所以叫估價值,如圖中所示,黑色格子表示當前位置,綠色格子表示下一步可能到達的位置,即上、下、左、右這幾個方
向,紅色格子表示終點,褐色表示障礙物,現在要從黑色格子到達紅色格子,那麼黑色格子的下一步肯定是綠色格子當中的一個,黑色格子到綠色格子之間是相挨著
的,所以我們可以很明確的知道它的實際代價為1(移動一步的代價)即g(x),綠色格子到紅色格子之間隔著很長的距離,中間還有障礙物,所以這個代價是未
知的,即h(x),所以總的代價就為f(x) = g(x) +
h(x),我們看到周圍有4個綠色的格子,到底走那一步比較好呢,所以我們要把這4個格子的f(x)值都求出來,然後進行排序,選擇f(x)值最小的,即
總代價最少的那個格子,以此方法繼續下去,直到到達終點 或者 地圖上沒有綠色格子了
下面來看一下這個工具類,g(x)和h(x)要選的比較合適,一般就是採用的曼哈頓演算法,即兩點在x方向和y方向的距離之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 尋路
mole("PathUtil", package.seeall)
local _map_data -- 地圖數據
local _open_list -- 開放節點
local _open_map -- 開放節點,為了提高性能而加
local _close_map -- 關閉節點
local _deleget -- 代理
local _dest_point -- 目標點
local _start_point -- 起點
local _path -- 路徑
-- 尋找路徑
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回點point1到點point2的實際代價
end
h = function(point1, point2)
-- add your code
-- 返回點point1到點point2的估算代價
end
getValue = function(j, i)
-- 返回地圖中第i行,第j列的數據 1為障礙物,0為非障礙物
end
width -- 地圖寬度
height -- 地圖高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end
function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end
function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end
-- 得到下一個可以移動的點
-- @param point 當前所在點
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end
-- 得到路徑
-- @param end_point 目標點
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end
-- 兩個點的代價比較器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end
-- 是否是障礙物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end
-- 兩個點是否是同一個點
function isEqual(point1, point2)
return point1.key == point2.key
end
-- 根據點得到點的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end
下面是工具類PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows
local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)
_path就是我們找到的路徑,起點為最後一個元素,終點為第一個元素
❷ 夢幻西遊自動尋路的尋路演算法怎麼算
A*尋路演算法 A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中; //還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了其他的節點,可能也把最好的
節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點(除非該節點是死節點),在每一步的估價
中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最
好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!
我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A*演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道的,所以我們用前面的估價函數f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別的重要)。可以證明應用這樣的估價
函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈。你懂了嗎?肯定沒懂。接著看。
舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是
。當然它是一種最臭的A*演算法。
再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除的節點就越多,估價函
數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由於實時性的問題,h(n)的信息越多,它的計
算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這里就有一個平衡的問題。
}
❸ 如何在使用Cocos2D中實現A星(A*)尋路演算法
實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值。
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
❹ A星搜索演算法
A星演算法是定義了一個函數f,公式為:
f = g + h
其中g函數代表目前為止從出發地到達該節點的成本,h函數是預估的當前節點到到目的地的成本,即
g(path) = path cost
h(path) = h(s) = estimated distance to goal
朝著使函數f具有最小值的路徑拓展,該演算法可以找到消耗最小消耗的路徑
注意A星演算法並不是總能找到最優解,能否找到最優解依賴於h函數,條件是
❺ A星尋路演算法和Unity自帶的尋路相比有什麼優勢
並沒一種尋路適合所有場合,選擇都是基於需求而定的。
1. A* 演算法與貪婪演算法不一樣,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。
A*是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
與啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
使用的地方:
a. 策略游戲的策略搜索
b. 方塊格子游戲中的格子尋路
2. Unity 自帶的導航網格系統
Unity 內置了NavMesh導航網格系統,一般來說導航網格演算法大多是「拐角點演算法」。
效率是比較高的,但是不保證最優解演算法。
使用的地方:
a.游戲場景的怪物尋路
b.動態規避障礙
❻ A星(A*,AStar)尋路
1.添加起始節點到待考察表(open list)
2.主循環
3.更新待考察表,重復第二步。
4.你已經到達終點,創建路徑列表並添加終點節點
5.添加終點節點的父節點到路徑列表
6.重復添加父節點直到起始節點。路徑列表就由一組節點構成了最佳路徑
在節點上加一個狀態變數,狀態有normal,open,close 三種。
這樣在判斷節點是不是在openlist 或者closelist里時不用每次從列表中搜索,可以減少很多時間。
常見的a*演算法的結果是一串用來表示所經過的路徑點坐標。但是這樣的路徑通常是有「鋸齒」的,並不符合現實中的智能表現。
因此,需要進一步的進行平滑處理,比如 佛洛依德演算法~
演算法原理很簡單,分為兩步:
1.去掉相鄰的共線的點
2.去掉多餘的拐彎的點
第一步實現起來很簡單,只需要遍歷一下,計算兩個向量的方向是否相同。
第二步的實現稍微麻煩一點,遍歷所有的點,去掉兩個可以直接通過的點之間的點。
其實是很經典的畫直線演算法,找兩個點作為端點畫一條線,這條先經過的網格如果都是可同行的,那麼我們就認為在路徑中這兩個點中間的那些點是多餘的。
其實第二步就可以完成優化,但是計算量比較大。所以先通過第一步來減少一部分計算量。
❼ A星尋路演算法和Unity自帶的尋路相比有什麼優勢
在理解Navigation的時候,首先要明確兩個知識點:
AStar:AStar是路點尋路演算法中的一種,同時AStar不屬於貪婪演算法,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。AStar是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
性能和內存佔用率都還行,和啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
A Star一般使用場景:
策略游戲的策略搜索
方塊格子游戲中的格子尋路
Navigation:網格尋路演算法,嚴格意義上它屬於」拐角點演算法」,效率是比較高的,但是不保證最優解演算法。Navigation相對來說消耗內存更大,性能的話還不錯。
Navigation一般使用場景:
游戲場景的怪物尋路
動態規避障礙
它們二者事件的實現方式和原理都不同。
AStar的話,