1. 大數據需要掌握哪些技能
大數據技術體系龐大,包括的知識較多
1、學習大數據首先要學習java基礎
Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學hadoop,
2、學習大數據必須學習大數據核心知識
Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。
3、學習大數據需要具備的能力
數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。
4、學習大數據可以應用的領域
大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛。
2. 大數據具體是學習什麼內容呢主要框架是什麼
首先,學習大數據是需要有java,python和R語言的基礎。
1) Java學習到什麼樣的程度才可以學習大數據呢?
java需要學會javaSE即可。javaweb,javaee對於大數據用不到。學會了javase就可以看懂hadoop框架。
2) python是最容易學習的,難易程度:python java Scala 。
python不是比java更直觀好理解么,因為會了Python 還是要學習java的,你學會了java,再來學習python會很簡單的,一周的時間就可以學會python。
3) R語言也可以學習,但是不推薦,因為java用的人最多,大數據的第一個框架Hadoop,底層全是Java寫的。就算學會了R還是看不懂hadoop。
java在大數據中的作用是構成大數據的語言,大數據的第一個框架Hadoop以及其他大數據技術框架,底層語言全是Java寫的,所以推薦首選學習java
大數據開發學習路線:
第一階段:Hadoop生態架構技術
1、語言基礎
Java:多理解和實踐在Java虛擬機的內存管理、以及多線程、線程池、設計模式、並行化就可以,不需要深入掌握。
linux:系統安裝、基本命令、網路配置、Vim編輯器、進程管理、Shell腳本、虛擬機的菜單熟悉等等。
Python:基礎語法,數據結構,函數,條件判斷,循環等基礎知識。
2、環境准備
這里介紹在windows電腦搭建完全分布式,1主2從。
VMware虛擬機、Linux系統(Centos6.5)、Hadoop安裝包,這里准備好Hadoop完全分布式集群環境。
3、MapRece
MapRece分布式離線計算框架,是Hadoop核心編程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的數據訪問,適合大規模數據集上的應用。
5、Yarn(Hadoop2.0)
Yarn是一個資源調度平台,主要負責給任務分配資源。
6、Hive
Hive是一個數據倉庫,所有的數據都是存儲在HDFS上的。使用Hive主要是寫Hql。
7、Spark
Spark 是專為大規模數據處理而設計的快速通用的計算引擎。
8、SparkStreaming
Spark Streaming是實時處理框架,數據是一批一批的處理。
9、SparkHive
Spark作為Hive的計算引擎,將Hive的查詢作為Spark的任務提交到Spark集群上進行計算,可以提高Hive查詢的性能。
10、Storm
Storm是一個實時計算框架,Storm是對實時新增的每一條數據進行處理,是一條一條的處理,可以保證數據處理的時效性。
11、Zookeeper
Zookeeper是很多大數據框架的基礎,是集群的管理者。
12、Hbase
Hbase是一個Nosql資料庫,是高可靠、面向列的、可伸縮的、分布式的資料庫。
13、Kafka
kafka是一個消息中間件,作為一個中間緩沖層。
14、Flume
Flume常見的就是採集應用產生的日誌文件中的數據,一般有兩個流程。
一個是Flume採集數據存儲到Kafka中,方便Storm或者SparkStreaming進行實時處理。
另一個流程是Flume採集的數據存儲到HDFS上,為了後期使用hadoop或者spark進行離線處理。
第二階段:數據挖掘演算法
1、中文分詞
開源分詞庫的離線和在線應用
2、自然語言處理
文本相關性演算法
3、推薦演算法
基於CB、CF,歸一法,Mahout應用。
4、分類演算法
NB、SVM
5、回歸演算法
LR、DecisionTree
6、聚類演算法
層次聚類、Kmeans
7、神經網路與深度學習
NN、Tensorflow
以上就是學習Hadoop開發的一個詳細路線,如果需要了解具體框架的開發技術,可咨詢加米穀大數據老師,詳細了解。
學習大數據開發需要掌握哪些技術呢?
(1)Java語言基礎
Java開發介紹、熟悉Eclipse開發工具、Java語言基礎、Java流程式控制制、Java字元串、Java數組與類和對象、數字處理類與核心技術、I/O與反射、多線程、Swing程序與集合類
(2)HTML、CSS與Java
PC端網站布局、HTML5+CSS3基礎、WebApp頁面布局、原生Java交互功能開發、Ajax非同步交互、jQuery應用
(3)JavaWeb和資料庫
資料庫、JavaWeb開發核心、JavaWeb開發內幕
Linux&Hadoop生態體系
Linux體系、Hadoop離線計算大綱、分布式資料庫Hbase、數據倉庫Hive、數據遷移工具Sqoop、Flume分布式日誌框架
分布式計算框架和Spark&Strom生態體系
(1)分布式計算框架
Python編程語言、Scala編程語言、Spark大數據處理、Spark—Streaming大數據處理、Spark—Mlib機器學習、Spark—GraphX 圖計算、實戰一:基於Spark的推薦系統(某一線公司真實項目)、實戰二:新浪網(www.sina.com.cn)
(2)storm技術架構體系
Storm原理與基礎、消息隊列kafka、Redis工具、zookeeper詳解、大數據項目實戰數據獲取、數據處理、數據分析、數據展現、數據應用
大數據分析—AI(人工智慧)Data
Analyze工作環境准備&數據分析基礎、數據可視化、Python機器學習
以上的回答希望對你有所幫助
3. 大數據培訓到底是培訓什麼
一、基礎部分:JAVA語言 和 LINUX系統
二、數據開發:
1、數據分析與挖掘
一般工作包括數據清洗,執行分析和數據可視化。學習Python、資料庫、網路爬蟲、數據分析與處理等。
大數據培訓一般是指大數據開發培訓。
大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
2、大數據開發
數據工程師建設和優化系統。學習hadoop、spark、storm、超大集群調優、機器學習、Docker容器引擎、ElasticSearch、並發編程等;
課程學習一共分為六個階段:
7
4. 大數據開發這么學習
第一階段:Hadoop生態架構技術
1、語言基礎
Java:多理解和實踐在Java虛擬機的內存管理、以及多線程、線程池、設計模式、並行化就可以,不需要深入掌握。
Linux:系統安裝、基本命令、網路配置、Vim編輯器、進程管理、Shell腳本、虛擬機的菜單熟悉等等。
Python:基礎語法,數據結構,函數,條件判斷,循環等基礎知識。
2、環境准備
這里介紹在windows電腦搭建完全分布式,1主2從。
VMware虛擬機、Linux系統(Centos6.5)、Hadoop安裝包,這里准備好Hadoop完全分布式集群環境。
3、MapRece
MapRece分布式離線計算框架,是Hadoop核心編程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的數據訪問,適合大規模數據集上的應用。
5、Yarn(Hadoop2.0)
Yarn是一個資源調度平台,主要負責給任務分配資源。
6、Hive
Hive是一個數據倉庫,所有的數據都是存儲在HDFS上的。使用Hive主要是寫Hql。
7、Spark
Spark 是專為大規模數據處理而設計的快速通用的計算引擎。
8、SparkStreaming
Spark Streaming是實時處理框架,數據是一批一批的處理。
9、SparkHive
Spark作為Hive的計算引擎,將Hive的查詢作為Spark的任務提交到Spark集群上進行計算,可以提高Hive查詢的性能。
10、Storm
Storm是一個實時計算框架,Storm是對實時新增的每一條數據進行處理,是一條一條的處理,可以保證數據處理的時效性。
11、Zookeeper
Zookeeper是很多大數據框架的基礎,是集群的管理者。
12、Hbase
Hbase是一個Nosql資料庫,是高可靠、面向列的、可伸縮的、分布式的資料庫。
13、Kafka
kafka是一個消息中間件,作為一個中間緩沖層。
14、Flume
Flume常見的就是採集應用產生的日誌文件中的數據,一般有兩個流程。
一個是Flume採集數據存儲到Kafka中,方便Storm或者SparkStreaming進行實時處理。
另一個流程是Flume採集的數據存儲到HDFS上,為了後期使用hadoop或者spark進行離線處理。
第二階段:數據挖掘演算法
1、中文分詞
開源分詞庫的離線和在線應用
2、自然語言處理
文本相關性演算法
3、推薦演算法
基於CB、CF,歸一法,Mahout應用。
4、分類演算法
NB、SVM
5、回歸演算法
LR、DecisionTree
6、聚類演算法
層次聚類、Kmeans
7、神經網路與深度學習
NN、Tensorflow
5. 以道大數據課程體系都講什麼
大數據技術在如今應用非常廣泛,許多想入行學習大數據培訓的童鞋不知從何學起,從哪兒開始學首先要根據你的基本情況而定,如果你是零基礎的也不需要擔心,先從基礎開始學起就好了,接下來學習基礎java開始、數據結構、關系型資料庫、linux系統操作,夯實基礎之後,再進入大數據的學習,例如:hadoop離線分析、Storm實時計算、spark內存計算的學習,以道教育大數據課程體系可以如下:
第一階段 WEB 開發基礎
HTML基礎
1、Html基本介紹
2、HTML語法規范
3、基本標簽介紹
4、HTML編輯器/文本文檔/WebStrom/elipse
5、HTML元素和屬性
6、基本的HTML元素
6.1 標題
6.2 段落
6.3 樣式和style屬性
6.3 鏈接 a
6.4 圖像 img
6.5 表格 table
6.6 列表 ul/ol/dl
7、 HTML注釋
8、表單介紹
9、Table標簽
10、DIV布局介紹
11、HTML列表詳解
HTML布局和Bootstrap
1、 HTML塊元素(block)和行內元素(inline)
2、使用div實現網頁布局
3、響應式WEB設計(Responsive Web Design)
4、使用bootstrap實現響應式布局
HTML表單元素
1、HTML表單 form
2、HTML表單元素
3、 HTML input的類型 type
4、 Html input的屬性
CSS基礎
1、CSS簡介及基本語法
2、在HTML文檔中使用CSS
3、CSS樣式
4、CSS選擇器
5、盒子模型
6、布局及定位
CSS高級/CSS3
1、尺寸和對齊
2、分類(clear/cursor/display/float/position/visibility)
3、導航欄
4、圖片庫
5、圖片透明
6、媒介類型 @media
7、CSS3
8、CSS3動畫效果
JavaScript基礎
1、JavaScript簡介
2、基本語法規則
3、在HTML文檔中使用JS
4、JS變數
5、JS數據類型
6、JS函數
7、JS運算符
8、流程式控制制
9、JS錯誤和調試
JavaScript對象和作用域
1、數字 Number
2、字元串String
3、日期 Date
4、數組
5、數學 Math
6、DOM對象和事件
7、BOM對象
8、Window對象
9、作用域和作用域鏈
10、JSON
Javascript庫
1、Jquery
2、Prototype
3、Ext Js
Jquery
1、Jquery基本語法
2、Jquery選擇器
3、Jquery事件
4、Jquery選擇器
5、Jquery效果和動畫
6、使用Jquery操作HTML和DOM
7、Jquery遍歷
8、Jquery封裝函數
9、Jquery案例
表單驗證和Jquery Validate
1、用Js對HTML表單進行驗證
2、Jquery Validata基本用法
3、默認校驗規則和提示信息
4、debug和ignore
5、更改錯誤信息顯示位置和樣式
6、全部校驗通過後的執行函數
7、修改驗證觸發方式
8、非同步驗證
9、自定義校驗方法
10、radio 和 checkbox、select 的驗證
Java基礎
1、關於Java
2、Java運行機制
3、第一個Java程序,注釋
4、Javac,Java,Javadoc等命令
5、標識符與關鍵字
6、變數的聲明,初始化與應用
7、變數的作用域
8、變數重名
9、基本數據類型
10、類型轉換與類型提升
11、各種數據類型使用細節
12、轉義序列
13、各種運算符的使用
流程式控制制
1、選擇控制語句if-else
2、選擇控制語句switch-case
3、循環控制語句while
4、循環控制語句do-while
5、循環控制語句for與增強型for
6、break,continue,return
7、循環標簽
8、數組的聲明與初始化
9、數組內存空間分配
10、棧與堆內存
11、二維(多維)數組
12、Arrays類的相關方法
13、main方法命令行參數
面向對象
1、面向對象的基本思想
2、類與對象
3、成員變數與默認值
4、方法的聲明,調用
5、參數傳遞和內存圖
6、方法重載的概念
7、調用原則與重載的優勢
8、構造器聲明與默認構造器
9、構造器重載
10、this關鍵字的使用
11、this調用構造器原則
12、實例變數初始化方式
13、可變參數方法
訪問許可權控制
1、包 package和庫
2、訪問許可權修飾符private/protected/public/包訪問許可權
3、類的訪問許可權
4、抽象類和抽象方法
5、介面和實現
6、解耦
7、Java的多重繼承
8、通過繼承來擴展介面
錯誤和異常處理
1、概念:錯誤和異常
2、基本異常
3、捕獲異常 catch
4、創建自定義異常
5、捕獲所有異常
6、Java標准異常
7、使用finally進行清理
8、異常的限制
9、構造器
10、異常匹配
11、異常使用指南
資料庫基礎(MySQL)
資料庫基礎(MySQL)
JDBC
1、Jdbc基本概念
2、使用Jdbc連接資料庫
3、使用Jdbc進行crud操作
4、使用Jdbc進行多表操作
5、Jdbc驅動類型
6、Jdbc異常和批量處理
7、Jdbc儲存過程
Servlet和JSP
1、Servlet簡介
2、Request對象
3、Response對象
4、轉發和重定向
5、使用Servlet完成Crud
6、Session和Coolie簡介
7、ServletContext和Jsp
8、El和Jstl的使用
Ajax
1、什麼是Ajax
2、XMLHttpRequest對象(XHR)
3、XHR請求
4、XHR響應
5、readystate/onreadystatechange
6、Jquery Ajax
7、JSON
8、案例:對用戶名是否可用進行伺服器端校驗
綜合案例
1、項目開發一般流程介紹
2、模塊化和分層
3、DButils
4、QueryRunner
5、ResultSetHandle
6、案例:用戶登錄/注冊,從前端到後端
第二階段 Java SE
訪問許可權和繼承
1、包的聲明與使用
2、import與import static
3、訪問許可權修飾符
4、類的封裝性
5、static(靜態成員變數)
6、final(修飾變數,方法)
7、靜態成員變數初始化方式
8、類的繼承與成員繼承
9、super的使用
10、調用父類構造器
11、方法的重寫與變數隱藏
12、繼承實現多態和類型轉換
13、instanceof
抽象類與介面
1、抽象類
2、抽象方法
3、繼承抽象類
4、抽象類與多態
5、介面的成員
6、靜態方法與默認方法
7、靜態成員類
8、實例成員類
9、局部類
10、匿名類
11、eclipse的使用與調試
12、內部類對外圍類的訪問關系
13、內部類的命名
Lambda表達式與常用類
1、函數式介面
2、Lambda表達式概念
3、Lambda表達式應用場合
4、使用案例
5、方法引用
6、枚舉類型(編譯器的處理)
7、包裝類型(自動拆箱與封箱)
8、String方法
9、常量池機制
10、String講解
11、StringBuilder講解
12、Math,Date使用
13、Calendars使用
異常處理與泛型
1、異常分類
2、try-catch-finally
3、try-with-resources
4、多重捕獲multi-catch
5、throw與throws
6、自定義異常和優勢
7、泛型背景與優勢
8、參數化類型與原生類型
9、類型推斷
10、參數化類型與數組的差異
11、類型通配符
12、自定義泛型類和類型擦出
13、泛型方法重載與重寫
集合
1 、常用數據結構
2 、Collection介面
3 、List與Set介面
4 、SortedSet與NavigableSet
5 、相關介面的實現類
6 、Comparable與Comparator
7、Queue介面
8 、Deque介面
9 、Map介面
10、NavigableMap
11、相關介面的實現類
12、流操作(聚合操作)
13、Collections類的使用
I/O流與反射
1 、File類的使用
2 、位元組流
3 、字元流
4 、緩存流
5 、轉換流
6 、數據流
7、對象流
8、類載入,鏈接與初始化
9 、ClassLoader的使用
10、Class類的使用
11、通過反射調用構造器
12、安全管理器
網路編程模型與多線程
1、進程與線程
2、創建線程的方式
3、線程的相關方法
4、線程同步
5、線程死鎖
6、線程協作操作
7、計算機網路(IP與埠)
8、TCP協議與UDP協議
9、URL的相關方法
10、訪問網路資源
11、TCP協議通訊
12、UDP協議通訊
13、廣播
SSM-Spring
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.IOC
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.AOP
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.Mybatis
1.MyBatis簡介
2.MyBatis配置文件
3.用MyBatis完成CRUD
4.ResultMap的使用
5.MyBatis關聯查詢
6.動態SQL
7.MyBatis緩沖
8.MyBatis-Generator
Socket編程
1.網路通信和協議
2.關於Socket
3.Java Socket
4.Socket類型
5.Socket函數
6.WebSocket
7.WebSocket/Spring MVC/WebSocket Ajax
IO/非同步
window對象
全局作用域
窗口關系及框架
窗口位置和大小
打開窗口
間歇調用和超時調用(靈活運用)
系統對話框
location對象
navigator對象
screen對象
history對象
NIO/AIO
1.網路編程模型
2.BIO/NIO/AIO
3.同步阻塞
4.同步非阻塞
5.非同步阻塞
6.非同步非阻塞
7.NIO與AIO基本操作
8.高性能IO設計模式
第三階段 Java 主流框架
MyBatis
1.mybatis框架原理分析
2.mybatis框架入門程序編寫
3.mybatis和hibernate的本質區別和應用場景
4.mybatis開發方法
5.SqlMapConfig配置文件講解
6.輸入映射-pojo包裝類型的定義與實現
7.輸出映射-resultType、resultMap
8.動態sql
9.訂單商品數據模型分析
10.高級映射的使用
11.查詢緩存之一級緩存、二級緩存
12.mybatis與spring整合
13. mybatis逆向工程自動生成代碼
Spring/Spring MVC
1. springmvc架構介紹
2. springmvc入門程序
3. spring與mybatis整合
4. springmvc註解開發—商品修改功能分析
5. springmvc註解開發—RequestMapping註解
6. springmvc註解開發—Controller方法返回值
7. springmvc註解開發—springmvc參數綁定過程分析
8. springmvc註解開發—springmvc參數綁定實例講解
9. springmvc與struts2的區別
10. springmvc異常處理
11. springmvc上傳圖片
12. springmvc實現json交互
13. springmvc對RESTful支持
14. springmvc攔截器
第四階段 關系型資料庫/MySQL/NoSQL
SQL基礎
1.SQL及主流產品
2.MySQL的下載與安裝(sinux/windows)
3.MySql的基本配置/配置文件
4.基本的SQL操作 DDL
5.基本的SQL操作 DML
6.基本的SQL操作 DCL
7.MySQL客戶端工具
8.MySQL幫助文檔
MySQL數據類型和運算符
1 數值類型
2 日期時間類型
3 字元串類型
4 CHAR 和 VARCHAR 類型
5 BINARY 和 VARBINARY 類型
6 ENUM 類型
7 SET 類型
8 算術運算符
9 比較運算符
10 邏輯運算符
11 位運算
12 運算符的優先順序
MySQL函數
1 字元串函數
2 數值函數
3 日期和時間函數
4 流程函數
5 其他常用函數
MySQL存儲引擎
1.MySQL支持的存儲引擎及其特性
2.MyISAM
3.InnoDB
4.選擇合適的存儲引擎
選擇合適的數據類型
1 CHAR 與 VARCHAR
2 TEXT 與 BLOB
3 浮點數與定點數
4 日期類型選擇
字元集
1 字元集概述
2 Unicode字元集
3 漢字及一些常見字元集
4 選擇合適的字元集
5 MySQL 支持的字元集
6 MySQL 字元集的設置 .
索引的設計和使用
1.什麼是索引
2.索引的類型
3.索引的數據結構 BTree B+Tree Hash
4.索引的存儲
5.MySQL索引
6.查看索引的使用情況
7.索引設計原則
視圖/存儲過程/函數/觸發器
1. 什麼是視圖
2. 視圖操作
3. 什麼是存儲過程
4. 存儲過程操作
5. 什麼是函數
6. 函數的相關操作
7. 觸發器
事務控制/鎖
1. 什麼是事務
2. 事務控制
3. 分布式事務
4. 鎖/表鎖/行鎖
5. InnoDB 行鎖爭用
6. InnoDB 的行鎖模式及加鎖方法7
7 InnoDB 行鎖實現方式7
8 間隙鎖(Next-Key 鎖)
9 恢復和復制的需要,對 InnoDB 鎖機制的影響
10 InnoDB 在不同隔離級別下的一致性讀及鎖的差異
11 表鎖
12 死鎖
SQL Mode和安全問題
1. 關於SQL Mode
2. MySQL中的SQL Mode
3. SQL Mode和遷移
4. SQL 注入
5. 開發過程中如何避免SQL注入
SQL優化
1.通過 show status 命令了解各種 SQL 的執行頻率
2. 定位執行效率較低的 SQL 語句
3. 通過 EXPLAIN 分析低效 SQL 的執行計劃
4. 確定問題並採取相應的優化措施
5. 索引問題
6.定期分析表和檢查表
7.定期優化表
8.常用 SQL 的優化
MySQL資料庫對象優化
1. 優化表的數據類型
2 散列化
3 逆規范化
4 使用中間表提高統計查詢速度
5. 影響MySQL性能的重要參數
6. 磁碟I/O對MySQL性能的影響
7. 使用連接池
8. 減少MySQL連接次數
9. MySQL負載均衡
MySQL集群
MySQL管理和維護
MemCache
Redis
在Java項目中使用MemCache和Redis
第五階段:操作系統/Linux、雲架構
Linux安裝與配置
1、安裝Linux至硬碟
2、獲取信息和搜索應用程序
3、進階:修復受損的Grub
4、關於超級用戶root
5、依賴發行版本的系統管理工具
6、關於硬體驅動程序
7、進階:配置Grub
系統管理與目錄管理
1、Shell基本命令
2、使用命令行補全和通配符
3、find命令、locate命令
4、查找特定程序:whereis
5、Linux文件系統的架構
6、移動、復制和刪除
7、文件和目錄的許可權
8、文件類型與輸入輸出
9、vmware介紹與安裝使用
10、網路管理、分區掛載
用戶與用戶組管理
1、軟體包管理
2、磁碟管理
3、高級硬碟管理RAID和LVM
4、進階:備份你的工作和系統
5、用戶與用戶組基礎
6、管理、查看、切換用戶
7、/etc/...文件
8、進程管理
9、linux VI編輯器,awk,cut,grep,sed,find,unique等
Shell編程
1、 SHELL變數
2、傳遞參數
3、數組與運算符
4、SHELL的各類命令
5、SHELL流程式控制制
6、SHELL函數
7、SHELL輸入/輸出重定向
8、SHELL文件包含
伺服器配置
1、系統引導
2、管理守護進程
3、通過xinetd啟動SSH服務
4、配置inetd
5、Tomcat安裝與配置
6、MySql安裝與配置
7、部署項目到Linux
第六階段:Hadoop生態系統
Hadoop基礎
1、大數據概論
2、 Google與Hadoop模塊
3、Hadoop生態系統
4、Hadoop常用項目介紹
5、Hadoop環境安裝配置
6、Hadoop安裝模式
7、Hadoop配置文件
HDFS分布式文件系統
1、認識HDFS及其HDFS架構
2、Hadoop的RPC機制
3、HDFS的HA機制
4、HDFS的Federation機制
5、 Hadoop文件系統的訪問
6、JavaAPI介面與維護HDFS
7、HDFS許可權管理
8、hadoop偽分布式
Hadoop文件I/O詳解
1、Hadoop文件的數據結構
2、 HDFS數據完整性
3、文件序列化
4、Hadoop的Writable類型
5、Hadoop支持的壓縮格式
6、Hadoop中編碼器和解碼器
7、 gzip、LZO和Snappy比較
8、HDFS使用shell+Java API
MapRece工作原理
1、MapRece函數式編程概念
2、 MapRece框架結構
3、MapRece運行原理
4、Shuffle階段和Sort階段
5、任務的執行與作業調度器
6、自定義Hadoop調度器
7、 非同步編程模型
8、YARN架構及其工作流程
MapRece編程
1、WordCount案例分析
2、輸入格式與輸出格式
3、壓縮格式與MapRece優化
4、輔助類與Streaming介面
5、MapRece二次排序
6、MapRece中的Join演算法
7、從MySQL讀寫數據
8、Hadoop系統調優
Hive數據倉庫工具
1、Hive工作原理、類型及特點
2、Hive架構及其文件格式
3、Hive操作及Hive復合類型
4、Hive的JOIN詳解
5、Hive優化策略
6、Hive內置操作符與函數
7、Hive用戶自定義函數介面
8、Hive的許可權控制
Hive深入解讀
1 、安裝部署Sqoop
2、Sqoop數據遷移
3、Sqoop使用案例
4、深入了解資料庫導入
5、導出與事務
6、導出與SequenceFile
7、Azkaban執行工作流
Sqoop與Oozie
1 、安裝部署Sqoop
2、Sqoop數據遷移
3、Sqoop使用案例
4、深入了解資料庫導入
5、導出與事務
6、導出與SequenceFile
7、Azkaban執行工作流
Zookeeper詳解
1、Zookeeper簡介
2、Zookeeper的下載和部署
3、Zookeeper的配置與運行
4、Zookeeper的本地模式實例
5、Zookeeper的數據模型
6、Zookeeper命令行操作範例
7、storm在Zookeeper目錄結構
NoSQL、HBase
1、HBase的特點
2、HBase訪問介面
3、HBase存儲結構與格式
4、HBase設計
5、關鍵演算法和流程
6、HBase安裝
7、HBase的SHELL操作
8、HBase集群搭建
第七階段:Spark生態系統
Spark
1.什麼是Spark
2.Spark大數據處理框架
3.Spark的特點與應用場景
4.Spark SQL原理和實踐
5.Spark Streaming原理和實踐
6.GraphX SparkR入門
7.Spark的監控和調優
Spark部署和運行
1.WordCount准備開發環境
2.MapRece編程介面體系結構
3.MapRece通信協議
4.導入Hadoop的JAR文件
5.MapRece代碼的實現
6.打包、部署和運行
7.打包成JAR文件
Spark程序開發
1、啟動Spark Shell
2、載入text文件
3、RDD操作及其應用
4、RDD緩存
5、構建Eclipse開發環境
6、構建IntelliJ IDEA開發環境
7、創建SparkContext對象
8、編寫編譯並提交應用程序
Spark編程模型
1、RDD特徵與依賴
2、集合(數組)創建RDD
3、存儲創建RDD
4、RDD轉換 執行 控制操作
5、廣播變數
6、累加器
作業執行解析
1、Spark組件
2、RDD視圖與DAG圖
3、基於Standalone模式的Spark架構
4、基於YARN模式的Spark架構
5、作業事件流和調度分析
6、構建應用程序運行時環境
7、應用程序轉換成DAG
Spark SQL與DataFrame
1、Spark SQL架構特性
2、DataFrame和RDD的區別
3、創建操作DataFrame
4、RDD轉化為DataFrame
5、載入保存操作與Hive表
6、Parquet文件JSON數據集
7、分布式的SQL Engine
8、性能調優 數據類型
深入Spark Streaming
1、Spark Streaming工作原理
2、DStream編程模型
3、Input DStream
4、DStream轉換 狀態 輸出
5、優化運行時間及內存使用
6、文件輸入源
7、基於Receiver的輸入源
8、輸出操作
Spark MLlib與機器學習
1、機器學習分類級演算法
2、Spark MLlib庫
3、MLlib數據類型
4、MLlib的演算法庫與實例
5、ML庫主要概念
6、演算法庫與實例
GraphX與SparkR
1、Spark GraphX架構
2、GraphX編程與常用圖演算法
3、GraphX應用場景
4、SparkR的工作原理
5、R語言與其他語言的通信
6、SparkR的運行與應用
7、R的DataFrame操作方法
8、SparkR的DataFrame
Scala編程開發
1、Scala語法基礎
2、idea工具安裝
3、maven工具配置
4、條件結構、循環、高級for循環
5、數組、映射、元組
6、類、樣例類、對象、伴生對象
7、高階函數與函數式編程
Scala進階
1、 柯里化、閉包
2、模式匹配、偏函數
3、類型參數
4、協變與逆變
5、隱式轉換、隱式參數、隱式值
6、Actor機制
7、高級項目案例
Python編程
1、Python編程介紹
2、Python的基本語法
3、Python開發環境搭建
4、Pyhton開發Spark應用程序
第八階段:Storm生態系統
storm簡介與基本知識
1、storm的誕生誕生與成長
2、storm的優勢與應用
3、storm基本知識概念和配置
4、序列化與容錯機制
5、可靠性機制—保證消息處理
6、storm開發環境與生產環境
7、storm拓撲的並行度
8、storm命令行客戶端
Storm拓撲與組件詳解
1、流分組和拓撲運行
2、拓撲的常見模式
3、本地模式與stormsub的對比
4、 使用非jvm語言操作storm
5、hook、組件基本介面
6、基本抽象類
7、事務介面
8、組件之間的相互關系
spout詳解 與bolt詳解
1、spout獲取數據的方式
2、常用的spout
3、學習編寫spout類
4、bolt概述
5、可靠的與不可靠的bolt
6、復合流與復合anchoring
7、 使用其他語言定義bolt
8、學習編寫bolt類
storm安裝與集群搭建
1、storm集群安裝步驟與准備
2、本地模式storm配置命令
3、配置hosts文件、安裝jdk
4、zookeeper集群的搭建
5、部署節點
6、storm集群的搭建
7、zookeeper應用案例
8、Hadoop高可用集群搭建
Kafka
1、Kafka介紹和安裝
2、整合Flume
3、Kafka API
4、Kafka底層實現原理
5、Kafka的消息處理機制
6、數據傳輸的事務定義
7、Kafka的存儲策略
Flume
1、Flume介紹和安裝
2、Flume Source講解
3、Flume Channel講解
4、Flume Sink講解
5、flume部署種類、流配置
6、單一代理、多代理說明
7、flume selector相關配置
Redis
1、Redis介紹和安裝、配置
2、Redis數據類型
3、Redis鍵、字元串、哈希
4、Redis列表與集合
5、Redis事務和腳本
6、Redis數據備份與恢復
7、Redis的SHELL操作
6. 在機器學習中如何選擇一個合適的演算法
在我們使用機器學習處理問題的時候,我們需要選擇演算法,選擇一個好的演算法能夠幫助我們提高工作效率。但是很多朋友對選擇演算法不是很理解,在這篇文章中我們就給大家介紹一下關於機器學習選擇演算法的相關建議,希望能夠對大家有所幫助。
1.選擇演算法的意義
我們選擇演算法就是為了更高效率的進行處理問題。在我們充分了解數據及其特性以後,就能夠幫助我們更有效地選擇機器學習演算法。採用某種流程就可以縮小演算法的選擇范圍,使我們少走些彎路,但在具體選擇哪種演算法方面,一般並不存在最好的演算法或者可以給出最好結果的演算法,在實際做項目的過程中,這個過程往往需要多次嘗試,有時還要嘗試不同演算法。但是對於初學者,選擇演算法還是按照下面提到的演算法進行選擇。
2.選擇演算法的步驟
通常來說,選擇演算法是一個比較麻煩的事情,但是並不是不能選擇,選擇就需要我們十分細心,這樣我們才能夠選擇出一個合適的演算法,以便於我們更好的處理問題。選擇演算法首先需要分析業務需求或者場景,這一步完成以後,就需要我們初探數據,看看自己是否需要預測目標值,如果需要的話,那麼就使用監督學習,當然,使用監督學習的時候,如果發現了目標變數,如果是離散型,那麼就使用分類演算法,如果是連續型,那麼就使用回歸演算法。當然,如果我們發現不需要預測目標值,那麼就使用無監督學習,具體使用的演算法就是K-均值演算法、分層聚類演算法等其他演算法。
3.SQL spark演算法的優勢
有一種演算法十分常見並且實用,那就是SQL spark演算法,Spark SQL演算法有著功能強大、性能優良的機器學習庫,還可以用於圖像處理和用於流式處理的工具,其優勢十分明顯。
(1)這個演算法能夠與Hadoop、Hive、HBase等無縫連接:Spark可以直接訪問Hadoop、Hive、Hbase等的數據,同時也可使用Hadoop的資源管理器。
(2)在完整的大數據生態系統中,有我們熟悉的SQL式操作組件Spark SQL,還有功能強大、性能優良的機器學習庫、圖像計算及用於流式處理等演算法。
(3)在高性能的大數據計算平台中,由於數據被載入到集群主機的分布式內存中。數據可以被快速的轉換迭代,並緩存後續的頻繁訪問需求。基於內存運算,Spark可以比Hadoop快100倍,在磁碟中運算也比hadoop快10倍左右。
這篇文章我們給大家介紹了機器學習處理問題時如何選擇一個合適的演算法以及spark演算法的優勢的相關內容,相信大家對如何選擇演算法有了更加清晰的認識了吧?祝願大家可以早日學有所成、學以致用。
7. 如何基於Spark進行用戶畫像
基於Spark進行用戶畫像的解決辦法
一 用戶畫像的核心工作是為用戶打標簽,打標簽的重要目的之一是為了讓人能夠理解並且方便計算機處理,如,可以做分類統計:喜歡紅酒的用戶有多少?喜歡紅酒的人群中,男、女比例是多少?
二 也可以做數據挖掘工作:利用關聯規則計算,喜歡紅酒的人通常喜歡什麼運動品牌?利用聚類演算法分析,喜歡紅酒的人年齡段分布情況?
三大數據處理,離不開計算機的運算,標簽提供了一種便捷的方式,使得計算機能夠程序化處理與人相關的信息,甚至通過演算法、模型能夠「理解」 人。當計算機具備這樣的能力後,無論是搜索引擎、推薦引擎、廣告投放等各種應用領域,都將能進一步提升精準度,提高信息獲取的效率。
8. spark中有處理多標簽分類的演算法嗎
Python由於其易用性以及豐富的函數庫,已經成為數學、自然科學和統計學的首選編程語言。Scikit-learn通過在現有Python包上構建——NumPy SciPy和matplotlib——服務於數學和自然科學。生成的庫要麼可以使用互動式逗工作台地應用程序,要麼被嵌入到其他軟體和重用。工具箱可以在BSD許可下獲取,所以它是完全開放和可重用的。
9. spark mllib機器學習什麼語言
1、機器學習概念
1.1機器學習的定義
在維基網路上對機器學習提出以下幾種定義:
l「機器學習是一門人工智慧的科學,該領域的主要研究對象是人工智慧,特別是如何在經驗學習中改善具體演算法的性能」。
l「機器學習是對能通過經驗自動改進的計算機演算法的研究」。
l「機器學習是用數據或以往的經驗,以此優化計算機程序的性能標准。」一種經常引用的英文定義是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E。
可以看出機器學習強調三個關鍵詞:演算法、經驗、性能,其處理過程如下圖所示。
3、Spark MLlib架構解析