導航:首頁 > 源碼編譯 > 目標檢測演算法opencv

目標檢測演算法opencv

發布時間:2023-01-12 23:56:54

Ⅰ 目標檢測演算法是什麼

目標檢測演算法是先通過訓練集學習一個分類器,然後在測試圖像中以不同scale的窗口滑動掃描整個圖像;每次掃描做一下分類,判斷一下當前的這個窗口是否為要檢測的目標。檢測演算法的核心是分類,分類的核心一個是用什麼特徵,一個是用哪種分類器。

(1)目標檢測演算法opencv擴展閱讀:

目標檢測演算法可以分為:

1、背景建模法,包含時間平均模型、混合高斯模型、動態紋理背景、PCA模型、時一空聯合分布背景模型

2、點檢測法,包含Moravec檢測器、Harris檢測器 、仿射不變點檢測、S IFT

3、圖像分割法,包含Mean Shift方法 、Graph-cut方法、Active Contours方法

4、聚類分析法,包含支持向量機、神經網路、Adaptive Boosting

5、運動矢量場法,包含基於運動矢量場的方法

Ⅱ 目標檢測中使用的opencv函數boundingRect、minAreaRect和boxPoints

最近在做基於分割的文本檢測演算法實現,在得到連通域的輪廓後,要框出輪廓的最小矩陣,如果文本沒有角度,使用cv::boundingRect是沒有問題的,因為cv::boundingRect得到的結果是包覆此輪廓的最小正矩陣,但當文本存在角度時,使用cv::minAreaRect才是正解,因為它得到的結果時包覆輪廓的最小斜矩陣。

Ⅲ 運動目標檢測——光流法與opencv代碼實現

運動目標的檢測的其主要目的是 獲取目標對象的運動參數(位置、速度、加速度等)及運動軌跡 ,通過進一步分析處理,實現對目標行為更高層級上的理解。
運動目標檢測技術目的是 從序列圖像中將變化區域從背景圖像中提取出來 ,常用於視頻監視、圖像壓縮、三維重構、異常檢測等。

運動目標檢測主流方法有幀差法、背景差法、光流法等。光流法源於 仿生學 思想,更貼近於直覺,大量昆蟲的視覺機理便是基於光流法。
二十世紀五十年代心理學家Gibson在他的著作「The Perception of Visual World」中首次提出了以心理學實驗為基礎的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck創造性地將灰度與二維速度場相聯系,引入光流約束方程的演算法,對光流計算做了奠基性的工作。

光流(optical flow):由於目標對象或者攝像機的移動造成的圖像對象在連續兩幀圖像中的移動。

小球在連續五幀運動構成的光流 小球在連續五幀運動構成的光流

通俗說,對於一個圖片序列,把每張圖像每個像素在連續幀之間的運動速度和方向( 某像素點在連續兩幀上的位移矢量 )找出來就是光流場。

第t幀的時A點的位置是(x1, y1),第t+1幀時A點位置是(x2,y2),則像素點A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1幀的時候A點的位置涉及到不同的光流計算方法,主要有四種:基於梯度的方法、基於匹配的方法、基於能量的方法、基於相位的方法。

光流法依賴於三個假設:

根據所形成的光流場中 二維矢量的疏密程度 ,光流法可分為稠密光流與稀疏光流。

基於區域匹配生成的稠密光流場 基於區域匹配生成的稠密光流場

稀疏光流只對有 明顯特徵的組點 (如角點)進行跟蹤,計算開銷小。

基於特徵匹配發生成的稀疏光流場 基於特徵匹配發生成的稀疏光流場

http://www.opencv.org.cn/opencvdoc/2.3.2/html/moles/video/doc/motion_analysis_and_object_tracking.html#calcopticalflowfarneback
(1)calcOpticalFlowPyrLK
基於金字塔LK光流演算法,計算某些點集的稀疏光流。
參考論文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》
(2)calcOpticalFlowFarneback
基於Gunnar Farneback 的演算法計算稠密光流。
參考論文《Two-Frame Motion Estimation Based on PolynomialExpansion》
(3)CalcOpticalFlowBM
通過塊匹配的方法來計算光流
(4)CalcOpticalFlowHS
基於Horn-Schunck 的演算法計算稠密光流。
參考論文《Determining Optical Flow》
(5)calcOpticalFlowSF
論文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的實現

LK光流法效果 LK光流法效果

Ⅳ 目標檢測演算法的分步介紹(第 1 部分)

英文原文: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introction-to-the-basic-object-detection-algorithms-part-1/
對原文的表達有部分改動

在本文中,我們將更深入地研究可用於目標檢測的各種演算法。我們將從 RCNN 家族的演算法開始,即 RCNN、Fast RCNN 和 Faster RCNN。在本系列即將發布的文章中,我們將介紹更高級的演算法,如 YOLO、SSD 等。

下圖是說明目標檢測演算法如何工作的一個流行示例。圖像中的每個物體,從一個人到一隻風箏,都以一定的精度被定位和識別。

讓我們從最簡單的深度學習方法開始,也是一種廣泛使用的方法,用於檢測圖像中的目標——卷積神經網路( CNN)。CNN 的內部工作原理如下:

我們將圖像傳遞給網路,然後通過各種卷積和池化層處理,發送給全連接層。最後,我們以目標類別的形式獲得輸出。這相當簡單,不是嗎?對於每個輸入圖像,我們得到一個相應的類作為輸出。我們可以使用這種技術來檢測圖像中的各種目標嗎?讓我們看看如何使用 CNN 解決一般的目標檢測問題。

使用這種方法的問題在於圖像中的目標可能具有不同的縱橫比和空間位置。例如,在某些情況下,目標可能覆蓋圖像的大部分,而在某些情況下,目標可能僅覆蓋圖像的一小部分。目標的形狀也可能不同(在現實生活中經常發生)。由於這些因素,我們將需要大量的區域,從而導致大量的計算時間。因此,為了解決這個問題並減少區域數量,我們可以使用基於區域的 CNN,它使用提案法選擇區域。讓我們了解這個基於區域的 CNN 可以為我們做什麼。

與在大量區域上工作不同的是,RCNN 演算法是在圖像中選取一堆框並檢查這些框中是否有任何一個包含任何目標。 RCNN 使用 selective search 從圖像中提取這些框(這些框稱為 regions)。

讓我們首先了解什麼是 selective search 以及它如何識別不同的 regions。基本上四個模式可以構成一個物體:不同的尺度、顏色、紋理和外殼。selective search 識別圖像中的這些模式,並在此基礎上提出各種regions。以下是selective search 工作原理的簡要概述:

舉個例子:

到目前為止,我們已經看到了 RCNN 如何實現目標檢測。但是這種技術有其自身的局限性。由於以下步驟,訓練 RCNN 模型既昂貴又緩慢:

所有這些過程結合起來使 RCNN 非常慢。對每張新圖像進行預測大約需要 40-50 秒,這實質上使得模型在面對龐大的數據集時變得笨重且幾乎無法構建。

好消息是——我們有另一種目標檢測技術,它修復了我們在 RCNN 中看到的大部分問題。

我們還能做些什麼來減少 RCNN 演算法通常需要的計算時間?我們是否可以每張圖像只運行一次並獲取所有感興趣的區域(包含某個目標的區域)。

RCNN 的作者 Ross Girshick 提出了這個想法,即每張圖像只運行一次 CNN,然後找到一種方法在 2,000 個區域之間共享該計算。在 Fast RCNN 中,我們將輸入圖像提供給 CNN,後者反過來生成卷積特徵圖。使用這些地圖,提取提議的區域。然後我們使用 RoI 池化層將所有提議的區域重塑為固定大小,以便可以將其饋入全連接網路。

讓我們將其分解為簡化概念的步驟:

因此,Fast RCNN 不是使用三個不同的模型(如 RCNN),而是使用單個模型從區域中提取特徵,將它們分成不同的類,並同時返回識別類的邊界框。

為了進一步分解,我將對每個步驟進行可視化。

這就是 Fast RCNN 如何解決 RCNN 的兩個主要問題,1. 將每個圖像的一個而不是 2,000 個區域傳遞給 ConvNet。2. 使用一個而不是三個不同的模型來提取特徵、分類和生成邊界框。

但即使是 Fast RCNN 也存在某些問題。它還使用 selective search 作為尋找感興趣區域的建議方法,這是一個緩慢且耗時的過程。每張圖像檢測目標大約需要 2 秒,這與 RCNN 相比要好得多。但是當我們考慮大型現實生活數據集時,即使是 Fast RCNN 看起來也不那麼快了。

Faster RCNN 是 Fast RCNN 的修改版本。它們之間的主要區別在於 Fast RCNN 使用 selective search 來生成感興趣的區域,而 Faster RCNN 使用 Region Proposal Network ,又名 RPN。 RPN 將圖像特徵圖作為輸入並生成一組目標提議,每個提議的目標以分數作為輸出。

Faster RCNN 方法通常遵循以下步驟:

讓我簡要解釋一下這個區域提議網路(RPN)實際上是如何工作的。

首先,Faster RCNN 從 CNN 獲取特徵圖並將它們傳遞給區域提議網路。 RPN 在這些特徵圖上使用一個滑動窗口,在每個窗口,它生成 k 個不同形狀和大小的 Anchor 框:

Anchor 框是固定大小的邊界框,它們放置在整個圖像中,具有不同的形狀和大小。對於每個 Anchor,RPN 預測兩件事:

我們現在有不同形狀和大小的邊界框,它們被傳遞到 RoI 池化層。在 RPN 步驟之後,有可能存在沒有分配給它們的類別提議。我們可以獲取每個建議並對其進行裁剪,以便每個建議都包含一個目標。這就是 RoI 池化層所做的。它為每個錨點提取固定大小的特徵圖:

然後將這些特徵圖傳遞到具有 softmax 和線性回歸層的全連接層。它最終對目標進行分類並預測已識別目標的邊界框。

到目前為止,我們討論的所有目標檢測演算法都使用區域來識別目標。網路不會一次性查看完整圖像,而是依次關注圖像的各個部分。這會造成兩個並發症:

Ⅳ 目標跟蹤檢測演算法(一)——傳統方法

姓名:劉帆;學號:20021210609;學院:電子工程學院

https://blog.csdn.net/qq_34919792/article/details/89893214

【嵌牛導讀】目標跟蹤演算法研究難點與挑戰在於實際復雜的應用環境 、背景相似干擾、光照條件的變化、遮擋等外界因素以及目標姿態變化,外觀變形,尺度變化、平面外旋轉、平面內旋轉、出視野、快速運動和運動模糊等。而且當目標跟蹤演算法投入實際應用時,不可避免的一個問題——實時性問題也是非常的重要。正是有了這些問題,才使得演算法研究充滿著難點和挑戰。

【嵌牛鼻子】目標跟蹤演算法,傳統演算法

【嵌牛提問】利用目標跟蹤檢測演算法要達到何目的?第一階段的單目標追蹤演算法包括什麼?具體步驟有哪些?它們有何特點?

【嵌牛正文】

第一階段

目標跟蹤分為兩個部分,一個是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一個是對目標特徵進行跟蹤。

1、靜態背景

1)背景差: 對背景的光照變化、雜訊干擾以及周期性運動等進行建模。通過當前幀減去背景圖來捕獲運動物體的過程。

2)幀差: 由於場景中的目標在運動,目標的影像在不同圖像幀中的位置不同。該類演算法對時間上連續的兩幀或三幀圖像進行差分運算,不同幀對應的像素點相減,判斷灰度差的絕對值,當絕對值超過一定閾值時,即可判斷為運動目標,從而實現目標的檢測功能。

與二幀差分法不同的是,三幀差分法(交並運算)去除了重影現象,可以檢測出較為完整的物體。幀間差分法的原理簡單,計算量小,能夠快速檢測出場景中的運動目標。但幀間差分法檢測的目標不完整,內部含有「空洞」,這是因為運動目標在相鄰幀之間的位置變化緩慢,目標內部在不同幀圖像中相重疊的部分很難檢測出來。幀間差分法通常不單獨用在目標檢測中,往往與其它的檢測演算法結合使用。

3)Codebook

演算法為圖像中每一個像素點建立一個碼本,每個碼本可以包括多個碼元(對應閾值范圍),在學習階段,對當前像素點進行匹配,如果該像素值在某個碼元的學習閾值內,也就是說與之前出現過的某種歷史情況偏離不大,則認為該像素點符合背景特徵,需要更新對應點的學習閾值和檢測閾值。

如果新來的像素值與每個碼元都不匹配,則可能是由於動態背景導致,這種情況下,我們需要為其建立一個新的碼元。每個像素點通過對應多個碼元,來適應復雜的動態背景。

在應用時,每隔一段時間選擇K幀通過更新演算法建立CodeBook背景模型,並且刪除超過一段時間未使用的碼元。

4)GMM

混合高斯模型(Gaussian of Micture Models,GMM)是較常用的背景去除方法之一(其他的還有均值法、中值法、滑動平均濾波等)。

首先我們需要了解單核高斯濾波的演算法步驟:

混合高斯建模GMM(Gaussian Mixture Model)作為單核高斯背景建模的擴展,是目前使用最廣泛的一種方法,GMM將背景模型描述為多個分布,每個像素的R、G、B三個通道像素值的變化分別由一個混合高斯模型分布來刻畫,符合其中一個分布模型的像素即為背景像素。作為最常用的一種背景建模方法,GMM有很多改進版本,比如利用紋理復雜度來更新差分閾值,通過像素變化的劇烈程度來動態調整學習率等。

5)ViBe(2011)

ViBe演算法主要特點是隨機背景更新策略,這和GMM有很大不同。其步驟和GMM類似。具體的思想就是為每個像素點存儲了一個樣本集,樣本集中采樣值就是該像素點過去的像素值和其鄰居點的像素值,然後將每一個新的像素值和樣本集進行比較來判斷是否屬於背景點。

其中pt(x)為新幀的像素值,R為設定值,p1、p2、p3….為樣本集中的像素值,以pt(x)為圓心R為半徑的圓被認為成一個集,當樣本集與此集的交集大於設定的閾值#min時,可認為此為背景像素點(交集越大,表示新像素點與樣本集越相關)。我們可以通過改變#min的值與R的值來改變模型的靈敏度。

Step1:初始化單幀圖像中每個像素點的背景模型。假設每一個像素和其鄰域像素的像素值在空域上有相似的分布。基於這種假設,每一個像素模型都可以用其鄰域中的像素來表示。為了保證背景模型符合統計學規律,鄰域的范圍要足夠大。當輸入第一幀圖像時,即t=0時,像素的背景模型。其中,NG(x,y)表示空域上相鄰的像素值,f(xi,yi)表示當前點的像素值。在N次的初始化的過程中,NG(x,y)中的像素點(xi,yi)被選中的可能次數為L=1,2,3,…,N。

Step2:對後續的圖像序列進行前景目標分割操作。當t=k時,像素點(x,y)的背景模型為BKm(x,y),像素值為fk(x,y)。按照下面判斷該像素值是否為前景。這里上標r是隨機選的;T是預先設置好的閾值。當fk(x,y)滿足符合背景#N次時,我們認為像素點fk(x,y)為背景,否則為前景。

Step3:ViBe演算法的更新在時間和空間上都具有隨機性。每一個背景點有1/ φ的概率去更新自己的模型樣本值,同時也有1/ φ的概率去更新它的鄰居點的模型樣本值。更新鄰居的樣本值利用了像素值的空間傳播特性,背景模型逐漸向外擴散,這也有利於Ghost區域的更快的識別。同時當前景點計數達到臨界值時將其變為背景,並有1/ φ的概率去更新自己的模型樣本值(為了減少緩慢移動物體的影響和攝像機的抖動)。

可以有如下總結,ViBe中的每一個像素點在更新的時候都有一個時間和空間上隨機影響的范圍,這個范圍很小,大概3x3的樣子,這個是考慮到攝像頭抖動時會有坐標的輕微來回變化,這樣雖然由於ViBe的判別方式仍認為是背景點,但是也會對後面的判別產生影響,為了保證空間的連續性,隨機更新減少了這個影響。而在樣本值保留在樣本集中的概率隨著時間的增大而變小,這就保證了像素模型在時間上面的延續特性。

6)光流

光流是由物體或相機的運動引起的圖像對象在兩個連續幀之間的視在運動模式。它是2D矢量場,其中每個矢量是一個位移矢量,顯示點從第一幀到第二幀的移動。

光流實際上是一種特徵點跟蹤方法,其計算的為向量,基於三點假設:

1、場景中目標的像素在幀間運動時亮度(像素值或其衍生值)不發生變化;2、幀間位移不能太大;3、同一表面上的鄰近點都在做相同的運動;

光流跟蹤過程:1)對一個連續視頻幀序列進行處理;2)對每一幀進行前景目標檢測;3)對某一幀出現的前景目標,找出具有代表性的特徵點(Harris角點);4)對於前後幀做像素值比較,尋找上一幀在當前幀中的最佳位置,從而得到前景目標在當前幀中的位置信息;5)重復上述步驟,即可實現目標跟蹤

2、運動場(分為相機固定,但是視角變化和相機是運動的)

1)運動建模(如視覺里程計運動模型、速度運動模型等)

運動學是對進行剛性位移的相機進行構型,一般通過6個變數來描述,3個直角坐標,3個歐拉角(橫滾、俯仰、偏航)。

Ⅰ、對相機的運動建模

由於這個不是我們本次所要討論的重點,但是在《概率機器人》一書中提出了很多很好的方法,相機的運動需要對圖像內的像素做位移矩陣和旋轉矩陣的坐標換算。除了對相機建立傳統的速度運動模型外,也可以用視覺里程計等通關過置信度的更新來得到概率最大位置。

Ⅱ、對於跟蹤目標的運動建模

該方法需要提前通過先驗知識知道所跟蹤的目標對象是什麼,比如車輛、行人、人臉等。通過對要跟蹤的目標進行建模,然後再利用該模型來進行實際的跟蹤。該方法必須提前知道要跟蹤的目標對象是什麼,然後再去跟蹤指定的目標,這是它的局限性,因而其推廣性相對比較差。(比如已知跟蹤的物體是羽毛球,那很容易通過前幾幀的取點,來建立整個羽毛球運動的拋物線模型)

2)核心搜索演算法(常見的預測演算法有Kalman(卡爾曼)濾波、擴展卡爾曼濾波、粒子濾波)

Ⅰ、Kalman 濾波

Kalman濾波器是通過前一狀態預測當前狀態,並使用當前觀測狀態進行校正,從而保證輸出狀態平穩變化,可有效抵抗觀測誤差。因此在運動目標跟蹤中也被廣泛使用。

在視頻處理的運動目標跟蹤里,每個目標的狀態可表示為(x,y,w,h),x和y表示目標位置,w和h表示目標寬高。一般地認為目標的寬高是不變的,而其運動速度是勻速,那麼目標的狀態向量就應該擴展為(x,y,w,h,dx,dy),其中dx和dy是目標當前時刻的速度。通過kalman濾波器來估計每個時刻目標狀態的大致過程為:

對視頻進行運動目標檢測,通過簡單匹配方法來給出目標的第一個和第二個狀態,從第三個狀態開始,就先使用kalman濾波器預測出當前狀態,再用當前幀圖像的檢測結果作為觀測值輸入給kalman濾波器,得到的校正結果就被認為是目標在當前幀的真實狀態。(其中,Zt為測量值,為預測值,ut為控制量,Kt為增益。)

Ⅱ、擴展卡爾曼濾波(EKF)和無跡卡爾曼濾波(UKF)

由於卡爾曼濾波的假設為線性問題,無法直接用在非線性問題上,EKF和UKF解決了這個問題(這個線性問題體現在用測量量來計算預測量的過程中)。EKF是通過構建線性函數g(x),與非線性函數相切,並對每一時刻所求得的g(x)做KF,如下圖所示。

UKF與EKF去求解雅可比矩陣擬合線性方程的方法不同,通過對那個先驗分布中的採集點,來線性化隨機變數的非線性函數。與EKF所用的方法不同,UKF產生的高斯分布和實際高斯分布更加接近,其引起的近似誤差也更小。

Ⅲ、粒子濾波

1、初始狀態:基於粒子濾波的目標追蹤方法是一種生成式跟蹤方法,所以要有一個初始化的階段。對於第一幀圖像,人工標定出待檢測的目標,對該目標區域提出特徵;

2、搜索階段:現在已經知道了目標的特徵,然後就在目標的周圍撒點(particle), 如:a)均勻的撒點;b)按高斯分布撒點,就是近的地方撒得多,遠的地方撒的少。論文里使用的是後一種方法。每一個粒子都計算所在區域內的顏色直方圖,如初始化提取特徵一樣,然後對所有的相似度進行歸一化。文中相似性使用的是巴氏距離;

3、重采樣:根據粒子權重對粒子進行篩選,篩選過程中,既要大量保留權重大的粒子,又要有一小部分權重小的粒子;

4、狀態轉移:將重采樣後的粒子帶入狀態轉移方程得到新的預測粒子;

5、測量及更新:對目標點特徵化,並計算各個粒子和目標間的巴氏距離,更新粒子的權重;

6、決策階段:每個粒子都獲得一個和目標的相似度,相似度越高,目標在該范圍出現的可能性越高,將保留的所有粒子通過相似度加權後的結果作為目標可能的位置。

3)Meanshift演算法

MeanShift演算法屬於核密度估計法,它不需要任何先驗知識而完全依靠特徵空間中樣本點的計算其密度函數值。對於一組采樣數據,直方圖法通常把數據的值域分成若干相等的區間,數據按區間分成若干組,每組數據的個數與總參數個數的比率就是每個單元的概率值;核密度估計法的原理相似於直方圖法,只是多了一個用於平滑數據的核函數。採用核函數估計法,在采樣充分的情況下,能夠漸進地收斂於任意的密度函數,即可以對服從任何分布的數據進行密度估計。

Meanshift演算法步驟

1、通過對初始點(或者上一幀的目標點)為圓心,繪制一個半徑為R的圓心,尋找特徵和該點相似的點所構成的向量;

2、所有向量相加,可以獲得一個向量疊加,這個向量指向特徵點多的方向;

3、取步驟二的向量終點為初始點重復步驟一、二,直到得到的向量小於一定的閾值,也就是說明當前位置是特徵點密度最密集的地方,停止迭代,認為該點為當前幀的目標點;

4)Camshift演算法

Camshift演算法是MeanShift演算法的改進,稱為連續自適應的MeanShift演算法。Camshift 是由Meanshift 推導而來 Meanshift主要是用在單張影像上,但是獨立一張影像分析對追蹤而言並無意義,Camshift 就是利用MeanShift的方法,對影像串列進行分析。

1、首先在影像串列中選擇目標區域。

2、計算此區域的顏色直方圖(特徵提取)。

3、用MeanShift演演算法來收斂欲追蹤的區域。

4、通過目標點的位置和向量信息計算新的窗口大小,並標示之。

5、以此為參數重復步驟三、四。

Camshift 關鍵就在於當目標的大小發生改變的時候,此演算法可以自適應調整目標區域繼續跟蹤。

3、小結

第一階段的單目標追蹤演算法基本上都是傳統方法,計算量小,在嵌入式等設備中落地較多,opencv中也預留了大量的介面。通過上面的兩節的介紹,我們不難發現,目標檢測演算法的步驟分為兩部分,一部分是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一部分是對目標特徵進行跟蹤,如上文所提及的方法。所以目標檢測方法的發展,也可總結為兩個方面,一個是如何去獲得更加具有區分性的可跟蹤的穩定特徵,另一個是如何建立幀與幀之間的數據關聯,保證跟蹤目標是正確的。

隨著以概率為基礎的卡爾曼濾波、粒子濾波或是以Meanshift為代表向量疊加方法在目標檢測的運用,使得目標檢測不再需要假設自身的一個狀態為靜止的,而是可以是運動的,更加符合復雜場景中的目標跟蹤。

Ⅵ 目標跟蹤(3)MultiTracker : 基於 OpenCV (C++/Python) 的多目標跟蹤

在這篇文章中,我們將介紹如何使用通過 MultiTracker 類實現的 OpenCV 的多對象跟蹤 API。我們將共享C++ 和 Python 代碼。


大多數計算機視覺和機器學習的初學者都學習對象檢測。如果您是初學者,您可能會想為什麼我們需要對象跟蹤。我們不能只檢測每一幀中的對象嗎?

讓我們來探究一下跟蹤是有用的幾個原因。

首先,當在視頻幀中檢測到多個對象(例如人)時,跟蹤有助於跨幀建立對象的身份。

其次,在某些情況下,對象檢測可能會失敗,但仍可能跟蹤對象,因為跟蹤考慮了對象在前一幀中的位置和外觀。

第三,一些跟蹤演算法非常快,因為它們做的是局部搜索,而不是全局搜索。因此,我們可以通過每n幀進行目標檢測,並在中間幀中跟蹤目標,從而為我們的系統獲得很高的幀率。

那麼,為什麼不在第一次檢測後無限期地跟蹤對象呢?跟蹤演算法有時可能會丟失它正在跟蹤的對象。例如,當對象的運動太大時,跟蹤演算法可能跟不上。許多現實世界的應用程序同時使用檢測和跟蹤。

在本教程中,我們只關注跟蹤部分。我們想要跟蹤的對象將通過拖動它們周圍的包圍框來指定。

OpenCV 中的 MultiTracker 類提供了多目標跟蹤的實現。它是一個簡單的實現,因為它獨立處理跟蹤對象,而不對跟蹤對象進行任何優化。

讓我們逐步查看代碼,了解如何使用 OpenCV 的多目標跟蹤 API。

2.1 第 1 步:創建單一對象跟蹤器

多目標跟蹤器只是單目標跟蹤器的集合。我們首先定義一個函數,該函數接受一個跟蹤器類型作為輸入,並創建一個跟蹤器對象。OpenCV有8種不同的跟蹤器類型:BOOSTING, MIL, KCF,TLD, MEDIANFLOW, GOTURN, MOSSE, CSRT。

如果您想使用 GOTURN 跟蹤器,請務必閱讀這篇文章並下載 caffe 模型。

在下面的代碼中,給定跟蹤器類的名稱,我們返回跟蹤器對象。這將在稍後用於多目標跟蹤器。

Python


C++


2.2 第 2 步:讀取視頻的第一幀

多目標跟蹤器需要兩個輸入

給定這些信息,跟蹤器在所有後續幀中跟蹤這些指定對象的位置。 在下面的代碼中,我們首先使用 VideoCapture 類載入視頻並讀取第一幀。這將在稍後用於初始化 MultiTracker。

Python


C++


2.3 第 3 步:在第一幀中定位對象

接下來,我們需要在第一幀中定位我們想要跟蹤的對象。該位置只是一個邊界框。 OpenCV 提供了一個名為 selectROI 的函數,該函數會彈出一個 GUI 來選擇邊界框(也稱為感興趣區域 (ROI))。 在 C++ 版本中,selectROI 允許您獲取多個邊界框,但在 Python 版本中,它只返回一個邊界框。所以,在 Python 版本中,我們需要一個循環來獲取多個邊界框。 對於每個對象,我們還選擇一種隨機顏色來顯示邊界框。 代碼如下所示。

Python


C++

getRandomColors 函數相當簡單

2.4 第 3 步:初始化 MultiTracker

到目前為止,我們已經讀取了第一幀並獲得了對象周圍的邊界框。這就是我們初始化多目標跟蹤器所需的所有信息。

我們首先創建一個 MultiTracker 對象,並向其中添加與邊界框一樣多的單個對象跟蹤器。在此示例中,我們使用 CSRT 單對象跟蹤器,但您可以通過將下面的 trackerType 變數更改為本文開頭提到的 8 個跟蹤器之一來嘗試其他跟蹤器類型。 CSRT 跟蹤器不是最快的,但在我們嘗試的許多情況下它產生了最好的結果。

您還可以使用包裹在同一個 MultiTracker 中的不同跟蹤器,但當然,這沒什麼意義。

MultiTracker 類只是這些單個對象跟蹤器的包裝器。正如我們從上一篇文章中知道的那樣,單個對象跟蹤器是使用第一幀初始化的,並且邊界框指示我們想要跟蹤的對象的位置。 MultiTracker 將此信息傳遞給它在內部包裝的單個對象跟蹤器。

Python


C++


2.5 第 4 步:更新 MultiTracker 並顯示結果

最後,我們的 MultiTracker 已准備就緒,我們可以在新幀中跟蹤多個對象。我們使用 MultiTracker 類的 update 方法來定位新框架中的對象。每個跟蹤對象的每個邊界框都使用不同的顏色繪制。

Python


C++


C++


Python


Ⅶ 目標檢測演算法(R-CNN,fast R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3)

深度學習目前已經應用到了各個領域,應用場景大體分為三類:物體識別,目標檢測,自然語言處理。  目標檢測可以理解為是物體識別和物體定位的綜合 ,不僅僅要識別出物體屬於哪個分類,更重要的是得到物體在圖片中的具體位置。

2014年R-CNN演算法被提出,基本奠定了two-stage方式在目標檢測領域的應用。它的演算法結構如下圖

演算法步驟如下:

R-CNN較傳統的目標檢測演算法獲得了50%的性能提升,在使用VGG-16模型作為物體識別模型情況下,在voc2007數據集上可以取得66%的准確率,已經算還不錯的一個成績了。其最大的問題是速度很慢,內存佔用量很大,主要原因有兩個

針對R-CNN的部分問題,2015年微軟提出了Fast R-CNN演算法,它主要優化了兩個問題。

R-CNN和fast R-CNN均存在一個問題,那就是 由選擇性搜索來生成候選框,這個演算法很慢 。而且R-CNN中生成的2000個左右的候選框全部需要經過一次卷積神經網路,也就是需要經過2000次左右的CNN網路,這個是十分耗時的(fast R-CNN已經做了改進,只需要對整圖經過一次CNN網路)。這也是導致這兩個演算法檢測速度較慢的最主要原因。

faster R-CNN 針對這個問題, 提出了RPN網路來進行候選框的獲取,從而擺脫了選擇性搜索演算法,也只需要一次卷積層操作,從而大大提高了識別速度 。這個演算法十分復雜,我們會詳細分析。它的基本結構如下圖

主要分為四個步驟:

使用VGG-16卷積模型的網路結構:

卷積層採用的VGG-16模型,先將PxQ的原始圖片,縮放裁剪為MxN的圖片,然後經過13個conv-relu層,其中會穿插4個max-pooling層。所有的卷積的kernel都是3x3的,padding為1,stride為1。pooling層kernel為2x2, padding為0,stride為2。

MxN的圖片,經過卷積層後,變為了(M/16) x (N/16)的feature map了。

faster R-CNN拋棄了R-CNN中的選擇性搜索(selective search)方法,使用RPN層來生成候選框,能極大的提升候選框的生成速度。RPN層先經過3x3的卷積運算,然後分為兩路。一路用來判斷候選框是前景還是背景,它先reshape成一維向量,然後softmax來判斷是前景還是背景,然後reshape恢復為二維feature map。另一路用來確定候選框的位置,通過bounding box regression實現,後面再詳細講。兩路計算結束後,挑選出前景候選框(因為物體在前景中),並利用計算得到的候選框位置,得到我們感興趣的特徵子圖proposal。

卷積層提取原始圖像信息,得到了256個feature map,經過RPN層的3x3卷積後,仍然為256個feature map。但是每個點融合了周圍3x3的空間信息。對每個feature map上的一個點,生成k個anchor(k默認為9)。anchor分為前景和背景兩類(我們先不去管它具體是飛機還是汽車,只用區分它是前景還是背景即可)。anchor有[x,y,w,h]四個坐標偏移量,x,y表示中心點坐標,w和h表示寬度和高度。這樣,對於feature map上的每個點,就得到了k個大小形狀各不相同的選區region。

對於生成的anchors,我們首先要判斷它是前景還是背景。由於感興趣的物體位於前景中,故經過這一步之後,我們就可以舍棄背景anchors了。大部分的anchors都是屬於背景,故這一步可以篩選掉很多無用的anchor,從而減少全連接層的計算量。

對於經過了3x3的卷積後得到的256個feature map,先經過1x1的卷積,變換為18個feature map。然後reshape為一維向量,經過softmax判斷是前景還是背景。此處reshape的唯一作用就是讓數據可以進行softmax計算。然後輸出識別得到的前景anchors。

另一路用來確定候選框的位置,也就是anchors的[x,y,w,h]坐標值。如下圖所示,紅色代表我們當前的選區,綠色代表真實的選區。雖然我們當前的選取能夠大概框選出飛機,但離綠色的真實位置和形狀還是有很大差別,故需要對生成的anchors進行調整。這個過程我們稱為bounding box regression。

假設紅色框的坐標為[x,y,w,h], 綠色框,也就是目標框的坐標為[Gx, Gy,Gw,Gh], 我們要建立一個變換,使得[x,y,w,h]能夠變為[Gx, Gy,Gw,Gh]。最簡單的思路是,先做平移,使得中心點接近,然後進行縮放,使得w和h接近。如下:

我們要學習的就是dx dy dw dh這四個變換。由於是線性變換,我們可以用線性回歸來建模。設定loss和優化方法後,就可以利用深度學習進行訓練,並得到模型了。對於空間位置loss,我們一般採用均方差演算法,而不是交叉熵(交叉熵使用在分類預測中)。優化方法可以採用自適應梯度下降演算法Adam。

得到了前景anchors,並確定了他們的位置和形狀後,我們就可以輸出前景的特徵子圖proposal了。步驟如下:

1,得到前景anchors和他們的[x y w h]坐標。

2,按照anchors為前景的不同概率,從大到小排序,選取前pre_nms_topN個anchors,比如前6000個

3,剔除非常小的anchors。

4,通過NMS非極大值抑制,從anchors中找出置信度較高的。這個主要是為了解決選取交疊問題。首先計算每一個選區面積,然後根據他們在softmax中的score(也就是是否為前景的概率)進行排序,將score最大的選區放入隊列中。接下來,計算其餘選區與當前最大score選區的IOU(IOU為兩box交集面積除以兩box並集面積,它衡量了兩個box之間重疊程度)。去除IOU大於設定閾值的選區。這樣就解決了選區重疊問題。

5,選取前post_nms_topN個結果作為最終選區proposal進行輸出,比如300個。

經過這一步之後,物體定位應該就基本結束了,剩下的就是物體識別了。

和fast R-CNN中類似,這一層主要解決之前得到的proposal大小形狀各不相同,導致沒法做全連接。全連接計算只能對確定的shape進行運算,故必須使proposal大小形狀變為相同。通過裁剪和縮放的手段,可以解決這個問題,但會帶來信息丟失和圖片形變問題。我們使用ROI pooling可以有效的解決這個問題。

ROI pooling中,如果目標輸出為MxN,則在水平和豎直方向上,將輸入proposal劃分為MxN份,每一份取最大值,從而得到MxN的輸出特徵圖。

ROI Pooling層後的特徵圖,通過全連接層與softmax,就可以計算屬於哪個具體類別,比如人,狗,飛機,並可以得到cls_prob概率向量。同時再次利用bounding box regression精細調整proposal位置,得到bbox_pred,用於回歸更加精確的目標檢測框。

這樣就完成了faster R-CNN的整個過程了。演算法還是相當復雜的,對於每個細節需要反復理解。faster R-CNN使用resNet101模型作為卷積層,在voc2012數據集上可以達到83.8%的准確率,超過yolo ssd和yoloV2。其最大的問題是速度偏慢,每秒只能處理5幀,達不到實時性要求。

針對於two-stage目標檢測演算法普遍存在的運算速度慢的缺點, yolo創造性的提出了one-stage。也就是將物體分類和物體定位在一個步驟中完成。 yolo直接在輸出層回歸bounding box的位置和bounding box所屬類別,從而實現one-stage。通過這種方式, yolo可實現45幀每秒的運算速度,完全能滿足實時性要求 (達到24幀每秒,人眼就認為是連續的)。它的網路結構如下圖:

主要分為三個部分:卷積層,目標檢測層,NMS篩選層。

採用Google inceptionV1網路,對應到上圖中的第一個階段,共20層。這一層主要是進行特徵提取,從而提高模型泛化能力。但作者對inceptionV1進行了改造,他沒有使用inception mole結構,而是用一個1x1的卷積,並聯一個3x3的卷積來替代。(可以認為只使用了inception mole中的一個分支,應該是為了簡化網路結構)

先經過4個卷積層和2個全連接層,最後生成7x7x30的輸出。先經過4個卷積層的目的是為了提高模型泛化能力。yolo將一副448x448的原圖分割成了7x7個網格,每個網格要預測兩個bounding box的坐標(x,y,w,h)和box內包含物體的置信度confidence,以及物體屬於20類別中每一類的概率(yolo的訓練數據為voc2012,它是一個20分類的數據集)。所以一個網格對應的參數為(4x2+2+20) = 30。如下圖

其中前一項表示有無人工標記的物體落入了網格內,如果有則為1,否則為0。第二項代表bounding box和真實標記的box之間的重合度。它等於兩個box面積交集,除以面積並集。值越大則box越接近真實位置。

分類信息: yolo的目標訓練集為voc2012,它是一個20分類的目標檢測數據集 。常用目標檢測數據集如下表:

| Name | # Images (trainval) | # Classes | Last updated |

| --------------- | ------------------- | --------- | ------------ |

| ImageNet | 450k | 200 | 2015 |

| COCO | 120K | 90 | 2014 |

| Pascal VOC | 12k | 20 | 2012 |

| Oxford-IIIT Pet | 7K | 37 | 2012 |

| KITTI Vision | 7K | 3 | |

每個網格還需要預測它屬於20分類中每一個類別的概率。分類信息是針對每個網格的,而不是bounding box。故只需要20個,而不是40個。而confidence則是針對bounding box的,它只表示box內是否有物體,而不需要預測物體是20分類中的哪一個,故只需要2個參數。雖然分類信息和confidence都是概率,但表達含義完全不同。

篩選層是為了在多個結果中(多個bounding box)篩選出最合適的幾個,這個方法和faster R-CNN 中基本相同。都是先過濾掉score低於閾值的box,對剩下的box進行NMS非極大值抑制,去除掉重疊度比較高的box(NMS具體演算法可以回顧上面faster R-CNN小節)。這樣就得到了最終的最合適的幾個box和他們的類別。

yolo的損失函數包含三部分,位置誤差,confidence誤差,分類誤差。具體公式如下:

誤差均採用了均方差演算法,其實我認為,位置誤差應該採用均方差演算法,而分類誤差應該採用交叉熵。由於物體位置只有4個參數,而類別有20個參數,他們的累加和不同。如果賦予相同的權重,顯然不合理。故yolo中位置誤差權重為5,類別誤差權重為1。由於我們不是特別關心不包含物體的bounding box,故賦予不包含物體的box的置信度confidence誤差的權重為0.5,包含物體的權重則為1。

Faster R-CNN准確率mAP較高,漏檢率recall較低,但速度較慢。而yolo則相反,速度快,但准確率和漏檢率不盡人意。SSD綜合了他們的優缺點,對輸入300x300的圖像,在voc2007數據集上test,能夠達到58 幀每秒( Titan X 的 GPU ),72.1%的mAP。

SSD網路結構如下圖:

和yolo一樣,也分為三部分:卷積層,目標檢測層和NMS篩選層

SSD論文採用了VGG16的基礎網路,其實這也是幾乎所有目標檢測神經網路的慣用方法。先用一個CNN網路來提取特徵,然後再進行後續的目標定位和目標分類識別。

這一層由5個卷積層和一個平均池化層組成。去掉了最後的全連接層。SSD認為目標檢測中的物體,只與周圍信息相關,它的感受野不是全局的,故沒必要也不應該做全連接。SSD的特點如下。

每一個卷積層,都會輸出不同大小感受野的feature map。在這些不同尺度的feature map上,進行目標位置和類別的訓練和預測,從而達到 多尺度檢測 的目的,可以克服yolo對於寬高比不常見的物體,識別准確率較低的問題。而yolo中,只在最後一個卷積層上做目標位置和類別的訓練和預測。這是SSD相對於yolo能提高准確率的一個關鍵所在。

如上所示,在每個卷積層上都會進行目標檢測和分類,最後由NMS進行篩選,輸出最終的結果。多尺度feature map上做目標檢測,就相當於多了很多寬高比例的bounding box,可以大大提高泛化能力。

和faster R-CNN相似,SSD也提出了anchor的概念。卷積輸出的feature map,每個點對應為原圖的一個區域的中心點。以這個點為中心,構造出6個寬高比例不同,大小不同的anchor(SSD中稱為default box)。每個anchor對應4個位置參數(x,y,w,h)和21個類別概率(voc訓練集為20分類問題,在加上anchor是否為背景,共21分類)。如下圖所示:

另外,在訓練階段,SSD將正負樣本比例定位1:3。訓練集給定了輸入圖像以及每個物體的真實區域(ground true box),將default box和真實box最接近的選為正樣本。然後在剩下的default box中選擇任意一個與真實box IOU大於0.5的,作為正樣本。而其他的則作為負樣本。由於絕大部分的box為負樣本,會導致正負失衡,故根據每個box類別概率排序,使正負比例保持在1:3。SSD認為這個策略提高了4%的准確率

另外,SSD採用了數據增強。生成與目標物體真實box間IOU為0.1 0.3 0.5 0.7 0.9的patch,隨機選取這些patch參與訓練,並對他們進行隨機水平翻轉等操作。SSD認為這個策略提高了8.8%的准確率。

和yolo的篩選層基本一致,同樣先過濾掉類別概率低於閾值的default box,再採用NMS非極大值抑制,篩掉重疊度較高的。只不過SSD綜合了各個不同feature map上的目標檢測輸出的default box。

SSD基本已經可以滿足我們手機端上實時物體檢測需求了,TensorFlow在android上的目標檢測官方模型ssd_mobilenet_v1_android_export.pb,就是通過SSD演算法實現的。它的基礎卷積網路採用的是mobileNet,適合在終端上部署和運行。

針對yolo准確率不高,容易漏檢,對長寬比不常見物體效果差等問題,結合SSD的特點,提出了yoloV2。它主要還是採用了yolo的網路結構,在其基礎上做了一些優化和改進,如下

網路採用DarkNet-19:19層,裡麵包含了大量3x3卷積,同時借鑒inceptionV1,加入1x1卷積核全局平均池化層。結構如下

yolo和yoloV2隻能識別20類物體,為了優化這個問題,提出了yolo9000,可以識別9000類物體。它在yoloV2基礎上,進行了imageNet和coco的聯合訓練。這種方式充分利用imageNet可以識別1000類物體和coco可以進行目標位置檢測的優點。當使用imageNet訓練時,只更新物體分類相關的參數。而使用coco時,則更新全部所有參數。

YOLOv3可以說出來直接吊打一切圖像檢測演算法。比同期的DSSD(反卷積SSD), FPN(feature pyramid networks)准確率更高或相仿,速度是其1/3.。

YOLOv3的改動主要有如下幾點:

不過如果要求更精準的預測邊框,採用COCO AP做評估標準的話,YOLO3在精確率上的表現就弱了一些。如下圖所示。

當前目標檢測模型演算法也是層出不窮。在two-stage領域, 2017年Facebook提出了mask R-CNN 。CMU也提出了A-Fast-RCNN 演算法,將對抗學習引入到目標檢測領域。Face++也提出了Light-Head R-CNN,主要探討了 R-CNN 如何在物體檢測中平衡精確度和速度。

one-stage領域也是百花齊放,2017年首爾大學提出 R-SSD 演算法,主要解決小尺寸物體檢測效果差的問題。清華大學提出了 RON 演算法,結合 two stage 名的方法和 one stage 方法的優勢,更加關注多尺度對象定位和負空間樣本挖掘問題。

目標檢測領域的深度學習演算法,需要進行目標定位和物體識別,演算法相對來說還是很復雜的。當前各種新演算法也是層不出窮,但模型之間有很強的延續性,大部分模型演算法都是借鑒了前人的思想,站在巨人的肩膀上。我們需要知道經典模型的特點,這些tricks是為了解決什麼問題,以及為什麼解決了這些問題。這樣才能舉一反三,萬變不離其宗。綜合下來,目標檢測領域主要的難點如下:

一文讀懂目標檢測AI演算法:R-CNN,faster R-CNN,yolo,SSD,yoloV2

從YOLOv1到v3的進化之路

SSD-Tensorflow超詳細解析【一】:載入模型對圖片進行測試  https://blog.csdn.net/k87974/article/details/80606407

YOLO    https://pjreddie.com/darknet/yolo/      https://github.com/pjreddie/darknet   

C#項目參考:https://github.com/AlturosDestinations/Alturos.Yolo

項目實踐貼個圖。

閱讀全文

與目標檢測演算法opencv相關的資料

熱點內容
安卓連airpods怎麼找耳機 瀏覽:925
加密貨幣轉賬教程 瀏覽:227
程序員小灰hashmap 瀏覽:836
國語pdf版 瀏覽:182
少兒編程作品美麗的小房子 瀏覽:970
伺服器卡在網頁上怎麼辦 瀏覽:54
用python自製編譯器 瀏覽:951
android分享新浪微博客戶端 瀏覽:26
系統中伺服器在哪裡下載地址 瀏覽:1001
新a4安卓手機怎麼投屏 瀏覽:173
pdftoemf 瀏覽:886
java介面可以實現介面嗎 瀏覽:59
vb編程10個隨機函數 瀏覽:21
程序員個人簡介100 瀏覽:772
土木工程師演算法工程師 瀏覽:92
javaexcel導入oracle 瀏覽:880
如何設置異地伺服器 瀏覽:882
為什麼安卓手機藍牙耳機不會彈窗 瀏覽:547
linuxf77編譯器安裝教程 瀏覽:949
android本地錄音許可權 瀏覽:446