A. 兩位數乘兩位數速算技巧
兩位數的乘法是一般是小學四年級以後就要學會的一種基礎數學計算方法,也是今後學習數學必不可少的內容。
對於數學運算來說,學會兩位數的乘法速算技巧,對於提高數學運算效率、提高考試成績具有重要的幫助。兩位數乘兩位數的速演算法有頭乘頭,尾加尾,尾乘尾;一個頭加1後,頭乘頭,尾乘尾;頭互補,尾相同;一個頭加1後,頭乘頭,尾乘尾。
1、頭乘頭,尾加尾,尾乘尾:這種演算法是在十幾乘十幾的時候可以直接使用,但是一定要注意,個位相乘的話,不夠兩位數的時候要用0來佔位。
2、一個頭加1後,頭乘頭,尾乘尾:這句話的意思就是頭相同,尾互補,主要是首同末和十,也就是十位數完全相同,個位數相加的和剛好也等於10的時候可以直接使用。在兩位數的乘法算式中,如果兩個乘數的十位數是相同的,先將第一個乘數加上第二個乘數的個位數,然後尾數相加。
3、頭乘頭加尾,尾乘尾:這句話的意思就是頭互補,尾相同,末同首和十,個位數完全相同,十位數剛好相加等於10 的時候則可以直接使用。如果兩個乘數的個位數是相同的,把十位數部分進行一次相乘和相乘,尾數個位數部分再相乘這一點需要注意的是兩數相同的各個位數之積為得數的後兩位數,不足10的時候,在十位上補0就可以了。。
4、一個頭加1後,頭乘頭,尾乘尾:第一個數乘數互補,另外一個乘數數字相同的時候使用,這一點也要注意一個知識點,那就是個位相乘,不夠兩位數的時候要用0來佔位。
數學速演算法是指利用數與數之間的特殊關系進行較快的加減乘除運算的計算方法。數學速演算法分為金華速算、魏德武速算、史豐收速算以及古人創造的「袖裡吞金」四大類速算方法。
B. 兩位數的乘法怎麼算最簡便
一、兩位數乘兩位數.1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位.2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位.3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位.4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一.6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落.例:13×326=?13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一.數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法.所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的.就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位.具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221.類似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了.在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法.我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10.它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數.具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925.類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明.通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位.(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數.具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數.具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數.具體到上面例子,4×5+3=23.則2和3分別是得數的千位數和百位數.因此,42×56=2352.再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954.同樣,用這種演算法,很容易得出所有兩位數乘法的積.
C. 任意兩個兩位數相乘的簡便演算法
快速算出兩個兩位數乘積的簡便運算方法:
如:43x32;98x86.....等,舉例如下:(假設43x32=a1;98x86=a2)
第一步:將兩個兩位數的個位相乘。如上述的3X2=6;8X6=48。將得出積的個位數作為兩個兩位數乘積的個位;將得出積的十位數向前進位,若積是個位數,則向前進位0。所以:a1的個位是6;a2的個位是8;其中要心裡記住a2向前進了數字4。
第二步: 將兩個兩位數的十位數字分別與兩個兩位數的個位數字交叉相乘,求出它們的和後,再加上第一步向前的進位數字,將得出數字的個位數作為兩個兩位數乘積的十位;將得出數字的百位、十位數字向前進位。所以:a1的十位是7(4X2+3X3+0=17,向前進位1);a2的十位是2(9X6+8X8+4=122,向前進位12)
第三步:將兩個兩位數的十位相乘,再加上第二步向前的進位的數字,直接作為兩個兩位數乘積的千位和百
位。所以:a1的千位和百位是13(4x3+1=13);a2的千位和百位是84(9x8+12=84);
綜上所述,掌握上述步驟就很快得出兩個兩位數乘積。先寫出乘積的個位,再由低到高位分別寫出即可。a1=1376;a2=8428。
所以,掌握方法對提高運算能力很有幫助,還要平時多多訓練。
D. 兩位數乖兩位數的快速簡便運算的方法
____________
|
|
2
5×11=2
7
5
|
|
|
-----
2+5
簡便演算法是其中一個乘數必須是「11」,然後用第一個乘數的十位數「2」做積的最高位,讓個位數「5」做積的個位,然後再把十位的「2」加個位的「5」的和「7」寫在積「2」與「5」的中間。
E. 怎麼算兩位數乘兩位數,所有的簡便方法
三年級數學這學期要學到兩位數乘兩位數,對於中年級的小同學來說,這種運算數字較大,相應的也有了難度,很容易在運算當中出錯,那麼,如何避免出錯,更快速地得出結果呢?
這里介紹三種豎式速演算法,第一種,是傳統的運算方法:
同樣是列豎式,先用兩個乘數的個位相乘,得數末位與乘數個位對齊。
接下來,兩個乘數的個位與十位交叉相乘,需要兩次,得數末位都與乘數十位對齊。
第四步,兩個乘數的十位相乘,得數末位與乘數百位對齊。
最後,統一相加,得出積。
這種速算方法的特點,是運算當中不需要進位,一目瞭然,更快得到運算的結果。
F. 兩位數乘兩位數簡便運算
兩位數乘兩位數有如下速算口訣:
十幾乘以十幾的速算規律口訣:頭加後尾,尾乘尾(滿十進位)。
任意兩位數乘以11的速算規律口訣:兩頭一拉,中間相加,滿十進位。
頭同尾合十口訣:頭乘(頭加1)尾乘尾(不滿十前面用0佔位)。
任意兩位數相乘速算口訣:頭乘頭,尾乘尾放一排。
裡面相乘放中間,外面相乘放下面,通通相加是得數。
傳統的兩位數乘兩位數有豎式法,再出現進位的時候,列豎式的情況下,我們一定要注意好數位對齊,然後用一個數乘另外一個數,將得出來的數末位和個位對其之後,再用這個數乘十位上數去乘這個數的乘數,然後的出來的末位和乘數的十位對齊之後,將兩次的結果下落相加就可以了,這也是一種比較簡便的演算法。
我們經常會遇到兩位數乘兩位數的問題,我們計算的數字比較大時,在運算中會出現錯誤的,所以我們可以選擇一些比較快速的演算法,最後再用一個其他方式來進行一個驗算就可以了。
G. 四年級兩位數簡便計算有什麼技巧
加法的簡便運算。
加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。
H. 兩位數乘兩位數有哪些簡便計算
一般兩位數的平方,都可以用這樣的方法來計算:用這個數加它的個位數再乘以它的十位數,將得數乘10,然後加個位數的平方即可。
就是所謂的「本數加其尾,乘頭居首位,為求平方積,再加尾乘尾。」
個位為1、2、3的兩位數的平方計算方法:
對於個位是1、2、3的兩位數,可以用這個數加它的個位數再乘以它的十位數,最後在算出的得數後面添加個位數的平方即可。
例如: 求23的平方,將23加3得26,26再乘2得52,52後面添加3的平方9,即可得529,這就是23平方的得數。
再比如求52的平方,可將52加2得54,再乘以5得270,後面添加2的平方4,即可得2704。
個位是4、6、7、8的兩位數。
這一組兩位數的平方計演算法和第一組兩位數平方的計演算法相似,不同之處是因為這一組兩位數個位的平方均超過10,所以在最後添加個位數的平方時須把它的十位數進到末位那個數,再把它的個位數添列到後面。
例如: 求26的平方,26 6 得 32 ,32×2得 64,因為個位數6的平方是36 ,須將3進到末一位,所以,64 3得67 ,67後面添加6得676,這就是26的平方結果。
再比如求48的平方,48 8 得56 ,56×4得224,224 6 (64的十位數)得 230 ,230後面添加 4 (64的個位數),即得 2304 。
以上演算法看似步驟多些,但都是極易心算的,熟練之後會覺得非常的簡便快捷。
對於個位是 5 的兩位數,當然也可以用上述方法心算,還有一種更簡便的方法: 只須將十位數加1再乘十位數,後邊再添加 25 即可得出結果。
例如求 45 的平方,用4 乘5 (4 1)得 20 ,20 後面添加 25 ,即可得出 2025 ,就是 45 的平方。
再如求 85 的平方,8×9 得 72,後面添加 25 ,即得 7225 。
此法還可用於一些易算的三位數的平方,如求 105 的平方,10×11得 110 ,那麼 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那麼 205 的平方就是 42025 了。
最後我們來看個位是9的兩位數的平方心演算法。
個位是9的兩位數計算平方時,可用「這個數加1」的平方,減去「這個數加1」的2倍,再加1即可得出結果。
例如求 29 的平方,「 29 1 」的平方是 900 ,減去「 29 1 」的2倍60 ,得數是 840 ,再加1得 841 。
再比如求 59 的平方,60的平方是 3600 ,減去60的2倍得3480,最後加1即得 3481
I. 兩位數乘兩位數的簡便方法
用豎式計算,書上的方法是:
先用下面乘數個位上的數去乘上面乘數的每一位上的數得到第一次積,再用十位上的數去乘上面的每一位數,再把兩次乘得的積相加。
每次的進位數要記住並與下一次乘得的積相加,(即進位要記清)