導航:首頁 > 源碼編譯 > 演算法th

演算法th

發布時間:2023-01-16 16:18:21

單片機的TH和TL應怎麼理解和怎麼用(C語言)

TH,TL是定時中斷中寫初始值用的,定時器T0,T1定時中分別對應TH0/TL0和TH1/TL1,初始值是把需要定時的十進制時間寫成單片機中16進制機器時間,當然並不是把十進制直接改成十六進制,機器周期時間不全相同,初始值可以根據自己的需要選用不同的演算法,(比如需要產生1ms的方波,即500us的高電平,500us的低電平,如果你選用T0方式0產生500us定時,晶振fosc=12MHz,那麼初始值是F00CH,把0CH寫入TL0,把0F0H寫入TH0。計數初值可能有誤,我根據自己的記憶算的,反正根據自己的需要算吧~~~)編好程序後,單片機會自動根據初始值計時,根據需要進行高低脈沖轉換,然後由脈沖的改變產生中斷。

⑵ 分割演算法

x沒有定義就使用了,定義一下,
要不然把Seg=zeros(x,y)
那句話不要了,只是一個初始化的命令,好像可以不要

⑶ Dijkstrath演算法是什麼如何用Dijkstrath演算法求計算機網路拓撲圖的最短路徑

Dijkstra演算法是典型 的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權邊。
迪傑斯特拉(Dijkstra)演算法思想
按路徑長度遞增次序產生最短路徑演算法:

把V分成兩組:

(1)S:已求出最短路徑的頂點的集合

(2)V-S=T:尚未確定最短路徑的頂點集合

將T中頂點按最短路徑遞增的次序加入到S中,

保證:(1)從源點V0到S中各頂點的最短路徑長度都不大於

從V0到T中任何頂點的最短路徑長度

(2)每個頂點對應一個距離值

S中頂點:從V0到此頂點的最短路徑長度

T中頂點:從V0到此頂點的只包括S中頂點作中間

頂點的最短路徑長度

依據:可以證明V0到T中頂點Vk的最短路徑,或是從V0到Vk的

直接路徑的權值;或是從V0經S中頂點到Vk的路徑權值之和

(反證法可證)

求最短路徑步驟
演算法步驟如下:

1. 初使時令 S={V0},T={其餘頂點},T中頂點對應的距離值

若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值

若不存在<V0,Vi>,d(V0,Vi)為∝

2. 從T中選取一個其距離值為最小的頂點W且不在S中,加入S

3. 對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的

距離值縮短,則修改此距離值

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

⑷ 【目標檢測演算法解讀】yolo系列演算法二

https://blog.csdn.net/Gentleman_Qin/article/details/84349144

|聲明:遵循CC 4.0 BY-SA版權協議

    建立在YOLOv1的基礎上,經過Joseph Redmon等的改進,YOLOv2和YOLO9000演算法在2017年CVPR上被提出,並獲得最佳論文提名,重點解決YOLOv1召回率和定位精度方面的誤差。在提出時,YOLOv2在多種監測數據集中都要快過其他檢測系統,並可以在速度與精確度上進行權衡。

    YOLOv2採用Darknet-19作為特徵提取網路,增加了批量標准化(Batch Normalization)的預處理,並使用224×224和448×448兩階段訓練ImageNet,得到預訓練模型後fine-tuning。

    相比於YOLOv1是利用FC層直接預測Bounding Box的坐標,YOLOv2借鑒了FSR-CNN的思想,引入Anchor機制,利用K-Means聚類的方式在訓練集中聚類計算出更好的Anchor模板,在卷積層使用Anchor Boxes操作,增加Region Proposal的預測,同時採用較強約束的定位方法,大大提高演算法召回率。同時結合圖像細粒度特徵,將淺層特徵與深層特徵相連,有助於對小尺寸目標的檢測。 

    下圖所示是YOLOv2採取的各項改進帶了的檢測性能上的提升:

    YOLO9000 的主要檢測網路也是YOLO v2,同時使用WordTree來混合來自不同的資源的訓練數據,並使用聯合優化技術同時在ImageNet和COCO數據集上進行訓練,目的是利用數量較大的分類數據集來幫助訓練檢測模型,因此,YOLO 9000的網路結構允許實時地檢測超過9000種物體分類,進一步縮小了檢測數據集與分類數據集之間的大小代溝。

    下面將具體分析YOLOv2的各個創新點:

BN概述:

    對數據進行預處理(統一格式、均衡化、去噪等)能夠大大提高訓練速度,提升訓練效果。BN正是基於這個假設的實踐,對每一層輸入的數據進行加工。

    BN是2015年Google研究員在論文《Batch Normalization: Accelerating Deep Network Training by Recing Internal Covariate Shift》一文中提出的,同時也將BN應用到了2014年的GoogLeNet上,也就是Inception-v2。

    BN層簡單講就是對網路的每一層的輸入都做了歸一化,這樣網路就不需要每層都去學數據的分布,收斂會更快。YOLOv1演算法(採用的是GoogleNet網路提取特徵)是沒有BN層的,而在YOLOv2中作者為每個卷積層都添加了BN層。

    使用BN對網路進行優化,讓網路提高了收斂性,同時還消除了對其他形式的正則化(regularization)的依賴,因此使用BN後可以從模型中去掉Dropout,而不會產生過擬合。

BN優點:

神經網路每層輸入的分布總是發生變化,加入BN,通過標准化上層輸出,均衡輸入數據分布,加快訓練速度,因此可以設置較大的學習率(Learning Rate)和衰減(Decay);

通過標准化輸入,降低激活函數(Activation Function)在特定輸入區間達到飽和狀態的概率,避免梯度彌散(Gradient Vanishing)問題;

輸入標准化對應樣本正則化,BN在一定程度上可以替代 Dropout解決過擬合問題。

BN演算法:

    在卷積或池化之後,激活函數之前,對每個數據輸出進行標准化,方式如下圖所示:

    公式很簡單,前三行是 Batch內數據歸一化(假設一個Batch中有每個數據),同一Batch內數據近似代表了整體訓練數據。第四行引入了附加參數 γ 和 β,此二者的取值演算法可以參考BN論文,在此不再贅述。

    fine-tuning:用已經訓練好的模型,加上自己的數據集,來訓練新的模型。即使用別人的模型的前幾層,來提取淺層特徵,而非完全重新訓練模型,從而提高效率。一般新訓練模型准確率都會從很低的值開始慢慢上升,但是fine-tuning能夠讓我們在比較少的迭代次數之後得到一個比較好的效果。

    YOLO模型分為兩部分,分類模型和檢測模型,前者使用在ImageNet上預訓練好的模型,後者在檢測數據集上fine-tuning。

    YOLOv1在預訓練時採用的是224*224的輸入(在ImageNet數據集上進行),然後在檢測的時候採用448*448的輸入,這會導致從分類模型切換到檢測模型的時候,模型還要適應圖像解析度的改變。

    YOLOv2則將預訓練分成兩步:先用224*224的輸入在ImageNet數據集訓練分類網路,大概160個epoch(將所有訓練數據循環跑160次)後將輸入調整到448*448,再訓練10個epoch(這兩步都是在ImageNet數據集上操作)。然後利用預訓練得到的模型在檢測數據集上fine-tuning。這樣訓練得到的模型,在檢測時用448*448的圖像作為輸入可以順利檢測。

    YOLOv1將輸入圖像分成7*7的網格,每個網格預測2個Bounding Box,因此一共有98個Box,同時YOLOv1包含有全連接層,從而能直接預測Bounding Boxes的坐標值,但也導致丟失較多的空間信息,定位不準。

    YOLOv2首先將YOLOv1網路的FC層和最後一個Pooling層去掉,使得最後的卷積層可以有更高解析度的特徵,然後縮減網路,用416*416大小的輸入代替原來的448*448,使得網路輸出的特徵圖有奇數大小的寬和高,進而使得每個特徵圖在劃分單元格(Cell)的時候只有一個中心單元格(Center Cell)。

    為什麼希望只有一個中心單元格呢?由於圖片中的物體都傾向於出現在圖片的中心位置,特別是比較大的物體,所以有一個單元格單獨位於物體中心的位置用於預測這些物體。

    YOLOv2通過引入Anchor Boxes,通過預測Anchor Box的偏移值與置信度,而不是直接預測坐標值。YOLOv2的卷積層採用32這個值來下采樣圖片,所以通過選擇416*416用作輸入尺寸最終能輸出一個13*13的特徵圖。若採用FSRCNN中的方式,每個Cell可預測出9個Anchor Box,共13*13*9=1521個(YOLOv2確定Anchor Boxes的方法見是維度聚類,每個Cell選擇5個Anchor Box)。

    在FSRCNN中,以一個51*39大小的特徵圖為例,其可以看做一個尺度為51*39的圖像,對於該圖像的每一個位置,考慮9個可能的候選窗口:3種面積3種比例。這些候選窗口稱為Anchor Boxes。下圖示出的是51*39個Anchor Box中心,以及9種Anchor Box示例。

YOLOv1和YOLOv2特徵圖數據結構:

YOLOv1:S*S* (B*5 + C) => 7*7(2*5+20)

    其中B對應Box數量,5對應邊界框的定位信息(w,y,w,h)和邊界框置信度(Confidience)。解析度是7*7,每個Cell預測2個Box,這2個Box共用1套條件類別概率(1*20)。

YOLOv2:S*S*K* (5 + C) => 13*13*9(5+20)

    解析度提升至13*13,對小目標適應性更好,借鑒了FSRCNN的思想,每個Cell對應K個Anchor box(YOLOv2中K=5),每個Anchor box對應1組條件類別概率(1*20)。

    聚類:聚類是指事先沒有「標簽」而通過某種成團分析找出事物之間存在聚集性原因的過程。即在沒有劃分類別的情況下,根據數據相似度進行樣本分組。

    在FSR-CNN中Anchor Box的大小和比例是按經驗設定的,然後網路會在訓練過程中調整Anchor Box的尺寸,最終得到准確的Anchor Boxes。若一開始就選擇了更好的、更有代表性的先驗Anchor Boxes,那麼網路就更容易學到准確的預測位置。

    YOLOv2使用K-means聚類方法類訓練Bounding Boxes,可以自動找到更好的寬高維度的值用於一開始的初始化。傳統的K-means聚類方法使用的是歐氏距離函數,意味著較大的Anchor Boxes會比較小的Anchor Boxes產生更多的錯誤,聚類結果可能會偏離。由於聚類目的是確定更精準的初始Anchor Box參數,即提高IOU值,這應與Box大小無關,因此YOLOv2採用IOU值為評判標准,即K-means 採用的距離函數(度量標准) 為:

d(box,centroid) = 1 - IOU(box,centroid)

    如下圖,左邊是聚類的簇個數和IOU的關系,兩條曲線分別代表兩個不同的數據集。分析聚類結果並權衡模型復雜度與IOU值後,YOLOv2選擇K=5,即選擇了5種大小的Box 維度來進行定位預測。

    其中紫色和灰色也是分別表示兩個不同的數據集,可以看出其基本形狀是類似的。更重要的是,可以看出聚類的結果和手動設置的Anchor Box位置和大小差別顯著——結果中扁長的框較少,而瘦高的框更多(更符合行人的特徵)。

    YOLOv2採用的5種Anchor的Avg IOU是61,而採用9種Anchor Boxes的Faster RCNN的Avg IOU是60.9,也就是說本文僅選取5種box就能達到Faster RCNN的9中box的效果。選擇值為9的時候,AVG IOU更有顯著提高。說明K-means方法的生成的boxes更具有代表性。

    直接對Bounding Boxes求回歸會導致模型不穩定,其中心點可能會出現在圖像任何位置,有可能導致回歸過程震盪,甚至無法收斂,尤其是在最開始的幾次迭代的時候。大多數不穩定因素產生自預測Bounding Box的中心坐標(x,y)位置的時候。

    YOLOv2的網路在特徵圖(13*13)的每一個單元格中預測出5個Bounding Boxes(對應5個Anchor Boxes),每個Bounding Box預測出5個值(tx,ty,tw,th,t0),其中前4個是坐標偏移值,t0是置信度結果(類似YOLOv1中的邊界框置信度Confidence)。YOLOv2借鑒了如下的預測方式,即當Anchor Box的中心坐標和寬高分別是(xa,ya)和(wa,wh)時,Bounding Box坐標的預測偏移值(tx,ty,tw,th)與其坐標寬高(x,y,w,h)的關系如下:                         

tx = (x-xa)/wa

ty= (y-ya)/ha

tw = log(w/wa)

th = log(h/ha)

    基於這種思想,YOLOv2在預測Bounding Box的位置參數時採用了如下強約束方法:

    上圖中,黑色虛線框是Anchor Box,藍色矩形框就是預測的Bounding Box結果,預測出的Bounding Box的坐標和寬高為(bx,by)和(bw,bh),計算方式如圖中所示,其中:對每個Bounding Box預測出5個值(tx,ty,tw,th,t0),Cell與圖像左上角的橫縱坐標距離為(cx,cy),σ定義為sigmoid激活函數(將函數值約束到[0,1]),該Cell對應的Anchor Box對應的寬高為(pw,ph)。

    簡而言之,(bx,by)就是(cx,cy)這個Cell附近的Anchor Box針對預測值(tx,ty)得到的Bounding Box的坐標預測結果,同時可以發現這種方式對於較遠距離的Bounding Box預測值(tx,ty)能夠得到很大的限制。

    YOLOv2通過添加一個轉移層,把高解析度的淺層特徵連接到低解析度的深層特徵(把特徵堆積在不同Channel中)而後進行融合和檢測。具體操作是先獲取前層的26*26的特徵圖,將其同最後輸出的13*13的特徵圖進行連接,而後輸入檢測器進行檢測(檢測器的FC層起到了全局特徵融合的作用),以此來提高對小目標的檢測能力。    

    為了適應不同尺度下的檢測任務,YOLOv2在訓練網路時,其在檢測數據集上fine-tuning時候採用的輸入圖像的size是動態變化的。具體來講,每訓練10個Batch,網路就會隨機選擇另一種size的輸入圖像。因為YOLOv2用到了參數是32的下采樣,因此也採用32的倍數作為輸入的size,即採用{320,352,…,608}的輸入尺寸(網路會自動改變尺寸,並繼續訓練的過程)。

這一策略讓網路在不同的輸入尺寸上都能達到較好的預測效果,使同一網路能在不同解析度上進行檢測。輸入圖片較大時,檢測速度較慢,輸入圖片較小時,檢測速度較快,總體上提高了准確率,因此多尺度訓練算是在准確率和速度上達到一個平衡。

    上表反映的是在檢測時,不同大小的輸入圖片情況下的YOLOv2和其他目標檢測演算法的對比。可以看出通過多尺度訓練的檢測模型,在測試的時候,輸入圖像在尺寸變化范圍較大的情況下也能取得mAP和FPS的平衡。

    YOLOv1採用的訓練網路是GoogleNet,YOLOv2採用了新的分類網路Darknet-19作為基礎網路,它使用了較多的3*3卷積核,並把1*1的卷積核置於3*3的卷積核之間,用來壓縮特徵,同時在每一次池化操作後把通道(Channels)數翻倍(借鑒VGG網路)。

    YOLOv1採用的GooleNet包含24個卷積層和2個全連接層,而Darknet-19包含19個卷積層和5個最大池化層(Max Pooling Layers),後面添加Average Pooling層(代替v1中FC層),而Softmax分類器作為激活被用在網路最後一層,用來進行分類和歸一化。

    在ImageNet數據集上進行預訓練,主要分兩步(採用隨機梯度下降法):

輸入圖像大小是224*224,初始學習率(Learning Rate)為0.1,訓練160個epoch,權值衰減(Weight Decay)為0.0005,動量(Momentum)為0.9,同時在訓練時採用標準的數據增強(Data Augmentation)方式如隨機裁剪、旋轉以及色度、亮度的調整。

fine-tuning:第1步結束後,改用448*448輸入(高解析度模型),學習率改為0.001,訓練10個epoch,其他參數不變。結果表明:fine-tuning後的top-1准確率為76.5%,top-5准確率為93.3%,若按照原來的訓練方式,Darknet-19的top-1准確率是72.9%,top-5准確率為91.2%。可以看出,兩步分別從網路結構和訓練方式方面入手提高了網路分類准確率。

    預訓練之後,開始基於檢測的數據集再進行fine-tuning。    

    首先,先把最後一個卷積層去掉,然後添加3個3*3的卷積層,每個卷積層有1024個卷積核,並且後面都連接一個1*1的卷積層,卷積核個數(特徵維度)根據需要檢測的類數量決定。(比如對VOC數據,每個Cell需要預測5個Boungding Box,每個Bounding Box有4個坐標值、1個置信度值和20個條件類別概率值,所以每個單元格對應125個數據,此時卷積核個數應該取125。)

    然後,將最後一個3*3*512的卷積層和倒數第2個卷積層相連(提取細粒度特徵),最後在檢測數據集上fine-tuning預訓練模型160個epoch,學習率採用0.001,並且在第60和90個epoch的時候將學習率除以10,權值衰減、動量和數據增強方法與預訓練相同。

    YOLO9000通過結合分類和檢測數據集,使得訓練得到的模型可以檢測約9000類物體,利用帶標注的分類數據集量比較大的特點,解決了帶標注的檢測數據集量比較少的問題。具體方法是:一方面採用WordTree融合數據集,另一方面聯合訓練分類數據集和檢測數據集。

    分類數據集和檢測數據集存在較大差別:檢測數據集只有粗粒度的標記信息,如「貓」、「狗」,而分類數據集的標簽信息則更細粒度,更豐富。比如「狗」就包括「哈士奇」、「金毛狗」等等。所以如果想同時在檢測數據集與分類數據集上進行訓練,那麼就要用一種一致性的方法融合這些標簽信息。

    用於分類的方法,常用Softmax(比如v2),Softmax意味著分類的類別之間要互相獨立的,而ImageNet和COCO這兩種數據集之間的分類信息不相互獨立(ImageNet對應分類有9000種,而COCO僅提供80種目標檢測),所以使用一種多標簽模型來混合數據集,即假定一張圖片可以有多個標簽,並且不要求標簽之間獨立,而後進行Softmax分類。

    由於ImageNet的類別是從WordNet選取的,作者採用以下策略重建了一個樹形結構(稱為WordTree):

遍歷ImageNet的標簽,然後在WordNet中尋找該標簽到根節點(所有的根節點為實體對象)的路徑;

如果路徑只有一條,將該路徑直接加入到WordTree結構中;

否則,從可選路徑中選擇一條最短路徑,加入到WordTree結構中。

WordTree的作用就在於將兩種數據集按照層級進行結合。

    如此,在WordTree的某個節點上就可以計算該節點的一些條件概率值,比如在terrier這個節點,可以得到如下條件概率值:

    進而,如果要預測此節點的概率(即圖片中目標是Norfolk terrier的概率),可以根據WordTree將該節點到根節點的條件概率依次相乘得到,如下式:

其中:        

    YOLO9000在WordTree1k(用有1000類別的ImageNet1k創建)上訓練了Darknet-19模型。為了創建WordTree1k作者添加了很多中間節點(中間詞彙),把標簽由1000擴展到1369。

    訓練過程中GroundTruth標簽要順著向根節點的路徑傳播:為了計算條件概率,模型預測了一個包含1369個元素的向量,而且基於所有「同義詞集」計算Softmax,其中「同義詞集」是同一概念下的所屬詞。

    現在一張圖片是多標記的,標記之間不需要相互獨立。在訓練過程中,如果有一個圖片的標簽是「Norfolk terrier」,那麼這個圖片還會獲得「狗」以及「哺乳動物」等標簽。

    如上圖所示,之前的ImageNet分類是使用一個大Softmax進行分類,而現在WordTree只需要對同一概念下的同義詞進行Softmax分類。然後作者分別兩個數據集上用相同訓練方法訓練Darknet-19模型,最後在ImageNet數據集上的top-1准確率為72.9%,top-5准確率為91.2%;在WordTree數據集上的top-1准確率為71.9%,top-5准確率為90.4%。

    這種方法的好處是有「退而求其次」的餘地:在對未知或者新的物體進行分類時,性能損失更低,比如看到一個狗的照片,但不知道是哪種種類的狗,那麼就預測其為「狗」。

    以上是構造WordTree的原理,下圖是融合COCO數據集和ImageNet數據集以及生成它們的WordTree的示意圖(用顏色區分了COCO數據集和ImageNet數據集的標簽節點), 混合後的數據集對應的WordTree有9418個類。另一方面,由於ImageNet數據集太大,YOLO9000為了平衡兩個數據集之間的數據量,通過過采樣(Oversampling)COCO數據集中的數據,使COCO數據集與ImageNet數據集之間的數據量比例達到1:4。

    對YOLO9000進行評估,發現其mAP比DPM高,而且YOLO有更多先進的特徵,YOLO9000是用部分監督的方式在不同訓練集上進行訓練,同時還能檢測9000個物體類別,並保證實時運行。雖然YOLO9000對動物的識別性能很好,但是對衣服或者裝備的識別性能不是很好(這跟數據集的數據組成有關)。

    YOLO9000的網路結構和YOLOv2類似,區別是每個單元格只採用3個Anchor Boxes。

    YOLO9000提出了一種在分類數據集和檢測數據集上聯合訓練的機制,即使用檢測數據集(COCO)的圖片去學習檢測相關的信息即查找對象(例如預測邊界框坐標、邊界框是否包含目標及目標屬於各個類別的概率),使用僅有類別標簽的分類數據集(ImageNet)中的圖片去擴展檢測到的對象的可識別種類。

    具體方法是:當網路遇到一個來自檢測數據集的圖片與標記信息,就把這些數據用完整的損失函數(v2和9000均沿用了v1網路的損失函數)反向傳播,而當網路遇到一個來自分類數據集的圖片和分類標記信息,只用代表分類誤差部分的損失函數反向傳播這個圖片。

    YOLO v2 在大尺寸圖片上能夠實現高精度,在小尺寸圖片上運行更快,可以說在速度和精度上達到了平衡,具體性能表現如下所示。

coco數據集

voc2012數據集

⑸ 偏最小二乘法的計算方法

首先將數據做標准化處理。X經標准化處理後的數據矩陣記為E0=( E01,…,E0p)n×p,Y的相應矩陣記為F0=( F01,…,F0q)n×q。
第一步 記t 1是E0的第一個成分,t 1= E0w1,w1是E0的第一個軸,它是一個單位向量,即|| w1||=1。
記u 1是F0的第一個成分,u 1= F0c1,c1是F0的第一個軸,並且|| c1||=1。
於是,要求解下列優化問題,即
(7-1)
記θ1= w1'E0'F0c1,即正是優化問題的目標函數值。
採用拉格朗日演算法,可得
(7-8) E0'F0F0'E0w1=θ12 w1
(7-9) F0'E0E0'F0c1=θ12 c1
所以,w1是對應於E0'F0F0'E0矩陣最大特徵值的單位特徵向量,而c1是對應於F0'E0E0'F0矩陣最大特徵值θ12的單位特徵向量。
求得軸w1和c1後,即可得到成分
t 1= E0w1
u 1= F0c1
然後,分別求E0和F0對t 1的回歸方程
(7-10) E0= t 1 p1'+ E1
(7-12) F0= t 1r1'+ F1
式中,回歸系數向量是
(7-13) p1= E0' t 1/|| t 1||2
(7-15) r1= F0' t 1/|| t 1||2
而E1和F1分別是兩個方程的殘差矩陣。
第二步 用殘差矩陣E1和F1取代E0和F0,然後,求第二個軸w2和c2以及第二個成分t2,u2,有
t 2= E1w2
u 2= F1c2
θ2=< t2, u2>= w2'E1'F1c2
w2是對應於E1'F1F1'E1矩陣最大特徵值的單位特徵向量,而c2是對應於F1'E1E1'F1矩陣最大特徵值θ22的單位特徵向量。計算回歸系數
p2= E1' t 2/|| t 2||2
r2= F1' t 2/|| t2||2
因此,有回歸方程
E1= t 2 p2'+ E2
F1= t 2r2'+ F2
如此計算下去,如果X的秩是A,則會有
(7-16) E0= t 1 p1'+…+t A pA'
(7-17) F0= t 1r1'+ …+t A rA'+ FA
由於t1,…,t A均可以表示成E01,…,E0p的線性組合,因此,式(7-17)還可以還原成yk*= F0k關於xj*= E0j的回歸方程形式,即
yk*=αk1 x1*+…+αkp xp*+ FAk, k=1,2,…,q
FAk是殘差矩陣FA的第k列。
3 交叉有效性
如果多一個成分而少一個樣本的預測誤差平方和(所有因變數和預測樣本相加)除以少一個成分的誤差平方和(所有的因變數和樣本相加)小於0.952,則多一個成分是值得的。 用下述原則提取自變數中的成分t 1,是與原則式(7-1)的結果完全等價的,即
(7-24)
(1)求矩陣E0'F0F0'E0最大特徵值所對應的單位特徵向量w1,求成分t 1,得
t 1= E0w1
E1= E0-t 1 p1'
式中, p1= E0' t 1/|| t 1||2
(2)求矩陣E1'F0F0'E1最大特徵值所對應的單位特徵向量w2,求成分t2,得
t 2= E1w2
E2= E1-t 2 p2'
式中, p2= E1' t 2/|| t2||2
……
(m)至第m步,求成分tm= Em-1wm,wm是矩陣Em-1'F0F0'Em-1最大特徵值所對應的單位特徵向量.
如果根據交叉有效性,確定共抽取m個成分t1,…,tm可以得到一個滿意的觀測模型,則求F0在t1,…,tm上的普通最小二乘回歸方程為
F0= t 1r1'+ …+t mrm'+ Fm
偏最小二乘回歸的輔助分析技術
1 精度分析
定義自變數成分th的各種解釋能力如下
(1)th對某自變數xj的解釋能力
(8-1) Rd(xj; th)=r2(xj, th)
(2)th對X的解釋能力
(8-2) Rd(X; th)=[r2(x1, th) + …+ r2(xp, th)]/p
(3)t1,…,tm對X的累計解釋能力
(8-3) Rd(X; t1,…,tm)= Rd(X; t1) + …+ Rd(X; tm)
(4)t1,…,tm對某自變數xj的累計解釋能力
(8-4) Rd(xj; t1,…,tm)= Rd(xj; t1) + …+ Rd(xj; tm)
(5)th對某因變數yk的解釋能力
(8-5) Rd(yk; th)=r2(yk, th)
(6)th對Y的解釋能力
(8-6) Rd(Y; th)=[r2(y1, th) + …+ r2(yq, th)]/q
(7)t1,…,tm對Y的累計解釋能力
(8-7) Rd(Y; t1,…,tm)= Rd(Y; t1) + …+ Rd(Y; tm)
(8)t1,…,tm對某因變數yk的累計解釋能力
(8-8) Rd(yk; t1,…,tm)= Rd(yk; t1) + …+ Rd(yk; tm)
2 自變數x j在解釋因變數集合Y的作用
x j在解釋Y時作用的重要性,可以用變數投影重要性指標VIP j來測度
VIP j 2=p[Rd(Y; t1) w1j2+ …+ Rd(Y; tm) wmj2]/[Rd(Y; t1) + …+ Rd(Y; tm)]
式中,whj是軸wh的第j個分量。注意 VIP1 2+ …+ VIP p2=p
3 特異點的發現
定義第i個樣本點對第h成分th的貢獻率Thi2,用它來發現樣本點集合中的特異點,即
(8-10) Thi2=thi2/((n-1)s h2)
式中,s h2是成分th的方差。
由此,還可以測算樣本點i對成分t1,…,tm的累計貢獻率
(8-11) Ti2= T1i2+ …+ Tmi2

Ti2≥m(n2-1)F0.05(m,n-m)/(n2 (n-m))
時,可以認為在95%的檢驗水平上,樣本點i對成分t1,…,tm的貢獻過大。
單因變數的偏最小二乘回歸模型
1 簡化演算法
第一步 已知數據E0,F0,由於u 1= F0,可得
w1= E0'F0/|| E0'F0||
t 1= E0w1
p1= E0' t 1/|| t 1||2
E1= E0-t 1 p1'
檢驗交叉有效性。若有效,繼續計算;否則只提取一個成分t 1。
第h步(h=2,…,m) 已知數據Eh-1,F0,有
wh= Eh-1'F0/|| Eh-1'F0||
t h= Eh-1wh
ph= Eh-1' t h/|| t h||2
Eh= Eh-1-th ph'
檢驗交叉有效性。若有效,繼續計算h+1步;否則停止求成分的計算。
這時,得到m個成分t1,…,t m,實施F0在t1,…,t m上的回歸,得
F0^= r1t 1+ …+ rmt m
由於t1,…,t m均是E0的線性組合,即
t h= Eh-1wh= E0wh*
所以F0^可寫成E0的線性組合形式,即
F0^= r1 E0w1*+ …+ rm E0wm*= E0[r1 w1*+ …+ rm wm*]
最後,也可以變換成y對x1,…,x p的回歸方程
y^= α0+α1x1+ …+αp xp

⑹ C++中分數求和的演算法

#include
using
namespace
std;
int
MaxFactor(int
nr,int
dr)//用來尋找最大公因子,歐幾里德演算法
{
int
th=nr,tl=dr;
if(nr
{th=dr;tl=nr;}
if(th%tl==0)
return
tl;
else
return
MaxFactor(tl,th%tl);
}
int
main()
{
int
n1,n2,d1,d2;
int
nr,dr,t;
char
c;
cout<<"請分別輸入兩個分數,用a/b
c/d的形式"<
cin>>n1>>c>>d1;
cin>>n2>>c>>d2;
dr=d1*d2;//計算新分數的分母
nr=d1*n2+d2*n1;//計算新分數的分子
if(nr%dr==0)//結果如果是整數,就直接輸出整數
cout<<"結果為:"<
else//否則先約分在輸出最終結果
{
t=MaxFactor(nr,dr);//找最大公因子
dr/=t;
nr/=t;//分子分母分別約分至最簡
cout<<"結果為:"<
}
return
0;
}

⑺ TH0=-50000/256;TH0=(65536-50000)/256分別什麼意思

(65536-50000)=15536,換算成16進制就是3CB0H\x0d\x0a(65536-50000)/256的結果是3CH,即一個字的高位位元組。\x0d\x0a而(65536-50000)%256的結果是B0H,即一個字的低位元組。\x0d\x0a單片機TH0=(65536-50000)/256;就是將定時器0(TH0)高位位元組付值3CH。

⑻ CAD里邊的TH,CH,LH分別代表什麼意思在線等!

TH台高,CH窗高(地面到窗檯高度),LH是結構梁高,一般後面搭配一個LW是梁寬。

互動式圖形顯示軟體用於圖形顯示的開窗、剪輯、觀看,圖形的變換、修改,以及相應的人機交互。CAD應用軟體提供幾何造型、特徵計算、繪圖等功能。

以完成面向機械、廣告、建築、電氣各專業領域的各種專門設計。構造應用軟體的四個要素是:演算法 、數據結構、用戶界面和數據管理。

(8)演算法th擴展閱讀:

工程工作站一般指具有超級小型機功能和三維圖形處理能力的一種單用戶互動式計算機系統。它有較強的計算能力,用規范的圖形軟體,有高解析度的顯示終端,可以聯在資源共享的區域網上工作,已形成最流行的CAD系統。

個人計算機pc系統價格低廉,操作方便,使用靈活。80年代以後,pc機性能不斷翻新,硬體和軟體發展迅猛,加之圖形卡、高解析度圖形顯示器的應用,以及pc機網路技術的發展,由pc機構成的CAD 系統已大量涌現,而且呈上升趨勢。

閱讀全文

與演算法th相關的資料

熱點內容
駕校用的app叫什麼 瀏覽:217
數控編程線的纏繞方法 瀏覽:970
安卓線性布局怎麼設計計算器布局 瀏覽:23
拓本pdf 瀏覽:76
2017法碩指南pdf 瀏覽:292
linuxphp命令參數 瀏覽:422
可靠性預測和推薦演算法 瀏覽:852
程序員送女友的相冊 瀏覽:254
壓縮文件怎麼設置打開加密 瀏覽:768
tracert命令結果詳解 瀏覽:360
唯賽思通用什麼APP 瀏覽:376
古玩哪個app好賣 瀏覽:149
u盤內容全部顯示為壓縮包 瀏覽:519
編譯固件時使用00優化 瀏覽:359
速借白條app怎麼樣 瀏覽:759
用紙張做的解壓東西教程 瀏覽:16
求圓的周長最快演算法 瀏覽:192
安卓熱點怎麼減少流量 瀏覽:272
北京代交社保用什麼app 瀏覽:858
第一眼解壓視頻 瀏覽:726