導航:首頁 > 源碼編譯 > 蟻群演算法參數優化

蟻群演算法參數優化

發布時間:2023-01-17 16:48:32

① 關於神經網路,蟻群演算法和遺傳演算法

  1. 神經網路並行性和自適應性很強,應用領域很廣,在任何非線性問題中都可以應用,如控制、信息、預測等各領域都能應用。

  2. 蟻群演算法最開始應用於TSP問題,獲得了成功,後來又廣泛應用於各類組合優化問題。但是該演算法理論基礎較薄弱,演算法收斂性都沒有得到證明,很多參數的設定也僅靠經驗,實際效果也一般,使用中也常常早熟。

  3. 遺傳演算法是比較成熟的演算法,它的全局尋優能力很強,能夠很快地趨近較優解。主要應用於解決組合優化的NP問題。

  4. 這三種演算法可以相互融合,例如GA可以優化神經網路初始權值,防止神經網路訓練陷入局部極小且加快收斂速度。蟻群演算法也可用於訓練神經網路,但一定要使用優化後的蟻群演算法,如最大-最小蟻群演算法和帶精英策略。

② 蟻群演算法

在螞蟻種群中,螞蟻間相互交流的方式是通過一種名為信息素的物質,它可以是螞蟻行動時留下的物質,可以被其他螞蟻所感知。

在尋找食物的過程中,如左圖所示,三角形ABC是等邊三角形,螞蟻窩在A點,C點有食物,A點的兩只螞蟻選擇了兩條路線前往C點,一條為AB->BC,另一條A->C,當走遠路的螞蟻,到達C點時,延AC邊上的螞蟻已經走了一個來回,路徑上信息素如右圖所示。後到會感知到邊AC上的信息素濃度更高一些,於是他也會選擇AC來行走,因為相同時間內,信息素濃度更高的說明,路程更短。

蟻群演算法便是基於這樣的一個思想來解決如TSP等優化問題,一下介紹便是拿TSP問題來介紹蟻群演算法

信息素用符號τ來表示,如下式,下標i,j表示從城市i到城市j這條道路上的信息素,上標0表示這是初次計算,也就是初始信息素,初始信息素都設置為1,或者一個較小的常數,表示每條道路上的信息素都相等,這樣通過運算螞蟻爬向各個城市的概率都相等

基於信息素,每隻螞蟻都有一個選擇道路的公式,如下式

其中

當所有螞蟻完成一次周遊後,各個路徑上的信息素進行一次更新

③ 什麼是蟻群演算法

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術。它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點。通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題。由柳洪平創建。
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。

④ 蟻群演算法優化BP神經網路 遇到的問題。

蟻群演算法的實質是遺傳演算法,為了避免陷入局部最優解,我使用的辦法是基因多樣化演算法,初始化基因組時,多取幾組隨機值,然後對這n組數據同時進化優化,並行計算。這樣可以大大減低陷入局部最優解的風險

⑤ 蟻群演算法,退火演算法這些東西究竟屬於什麼,這些東西要從哪裡才能系統學習

第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻

⑥ 蟻群演算法解決TSP問題,最優解是多少,參數如何選擇

概念:蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值

其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序

應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內

引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點: 1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。 引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。 既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。 其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。

具體參考http://ke..com/view/539346.htm
希望對你有幫助,謝謝。

⑦ 蟻群演算法的相關研究

跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不至走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的由來:螞蟻是地球上最常見、數量最多的昆蟲種類之一,常常成群結隊地出現在人類的日常生活環境中。這些昆蟲的群體生物智能特徵,引起了一些學者的注意。義大利學者M.Dorigo,V.Maniezzo等人在觀察螞蟻的覓食習性時發現,螞蟻總能找到巢穴與食物源之間的最短路徑。經研究發現,螞蟻的這種群體協作功能是通過一種遺留在其來往路徑上的叫做信息素(Pheromone)的揮發性化學物質來進行通信和協調的。化學通信是螞蟻採取的基本信息交流方式之一,在螞蟻的生活習性中起著重要的作用。通過對螞蟻覓食行為的研究,他們發現,整個蟻群就是通過這種信息素進行相互協作,形成正反饋,從而使多個路徑上的螞蟻都逐漸聚集到最短的那條路徑上。
這樣,M.Dorigo等人於1991年首先提出了蟻群演算法。其主要特點就是:通過正反饋、分布式協作來尋找最優路徑。這是一種基於種群尋優的啟發式搜索演算法。它充分利用了生物蟻群能通過個體間簡單的信息傳遞,搜索從蟻巢至食物間最短路徑的集體尋優特徵,以及該過程與旅行商問題求解之間的相似性。得到了具有NP難度的旅行商問題的最優解答。同時,該演算法還被用於求解Job-Shop調度問題、二次指派問題以及多維背包問題等,顯示了其適用於組合優化類問題求解的優越特徵。
多年來世界各地研究工作者對蟻群演算法進行了精心研究和應用開發,該演算法現已被大量應用於數據分析、機器人協作問題求解、電力、通信、水利、采礦、化工、建築、交通等領域。
蟻群演算法之所以能引起相關領域研究者的注意,是因為這種求解模式能將問題求解的快速性、全局優化特徵以及有限時間內答案的合理性結合起來。其中,尋優的快速性是通過正反饋式的信息傳遞和積累來保證的。而演算法的早熟性收斂又可以通過其分布式計算特徵加以避免,同時,具有貪婪啟發式搜索特徵的蟻群系統又能在搜索過程的早期找到可以接受的問題解答。這種優越的問題分布式求解模式經過相關領域研究者的關注和努力,已經在最初的演算法模型基礎上得到了很大的改進和拓展。
經過一定時間,從食物源返回的螞蟻到達D點同樣也碰到障礙物,也需要進行選擇。此時A, B兩側的信息素濃度相同,它們仍然一半向左,一半向右。但是當A側的螞蟻已經完全繞過障礙物到達C點時,B側的螞蟻由於需走的路徑更長,還不能到達C點,圖3表示蟻群在障礙物前經過一段時間後的情形。
此時對於從蟻巢出發來到C點的螞蟻來說,由於A側的信息素濃度高,B側的信息素較低,就傾向於選擇A側的路徑。這樣的結果是A側的螞蟻越來越多,最終所有螞蟻都選擇這條較短的路徑,圖4 表示蟻群最終選擇的路徑
上述過程,很顯然是由螞蟻所留下的信息素的「正反饋」過程而導致的。螞蟻個體就是通過這種信息的交流來達到搜索食物的目的。蟻群演算法的基本思想也是從這個過程轉化而來的。
蟻群演算法的特點:
1)蟻群演算法是一種自組織的演算法。在系統論中,自組織和它組織是組織的兩個基本分類,其區別在於組織力或組織指令是來自於系統的內部還是來自於系統的外部,來自於系統內部的是自組織,來自於系統外部的是他組織。如果系統在獲得空間的、時間的或者功能結構的過程中,沒有外界的特定干預,我們便說系統是自組織的。在抽象意義上講,自組織就是在沒有外界作用下使得系統熵減小的過程(即是系統從無序到有序的變化過程)。蟻群演算法充分體現了這個過程,以螞蟻群體優化為例子說明。當演算法開始的初期,單個的人工螞蟻無序的尋找解,演算法經過一段時間的演化,人工螞蟻間通過信息激素的作用,自發的越來越趨向於尋找到接近最優解的一些解,這就是一個無序到有序的過程。
2)蟻群演算法是一種本質上並行的演算法。每隻螞蟻搜索的過程彼此獨立,僅通過信息激素進行通信。所以蟻群演算法則可以看作是一個分布式的多agent系統,它在問題空間的多點同時開始進行獨立的解搜索,不僅增加了演算法的可靠性,也使得演算法具有較強的全局搜索能力。
3)蟻群演算法是一種正反饋的演算法。從真實螞蟻的覓食過程中我們不難看出,螞蟻能夠最終找到最短路徑,直接依賴於最短路徑上信息激素的堆積,而信息激素的堆積卻是一個正反饋的過程。對蟻群演算法來說,初始時刻在環境中存在完全相同的信息激素,給予系統一個微小擾動,使得各個邊上的軌跡濃度不相同,螞蟻構造的解就存在了優劣,演算法採用的反饋方式是在較優的解經過的路徑留下更多的信息激素,而更多的信息激素又吸引了更多的螞蟻,這個正反饋的過程使得初始的不同得到不斷的擴大,同時又引導整個系統向最優解的方向進化。因此,正反饋是螞蟻演算法的重要特徵,它使得演算法演化過程得以進行。
4)蟻群演算法具有較強的魯棒性。相對於其它演算法,蟻群演算法對初始路線要求不高,即蟻群演算法的求解結果不依賴於初始路線的選擇,而且在搜索過程中不需要進行人工的調整。其次,蟻群演算法的參數數目少,設置簡單,易於蟻群演算法應用到其它組合優化問題的求解。
蟻群演算法的應用進展以蟻群演算法為代表的蟻群智能已成為當今分布式人工智慧研究的一個熱點,許多源於蜂群和蟻群模型設計的演算法己越來越多地被應用於企業的運轉模式的研究。美國五角大樓正在資助關於群智能系統的研究工作-群體戰略(Swarm Strategy),它的一個實戰用途是通過運用成群的空中無人駕駛飛行器和地面車輛來轉移敵人的注意力,讓自己的軍隊在敵人後方不被察覺地安全進行。英國電信公司和美國世界通信公司以電子螞蟻為基礎,對新的電信網路管理方法進行了試驗。群智能還被應用於工廠生產計劃的制定和運輸部門的後勤管理。美國太平洋西南航空公司採用了一種直接源於螞蟻行為研究成果的運輸管理軟體,結果每年至少節約了1000萬美元的費用開支。英國聯合利華公司己率先利用群智能技術改善其一家牙膏廠的運轉情況。美國通用汽車公司、法國液氣公司、荷蘭公路交通部和美國一些移民事務機構也都採用這種技術來改善其運轉的機能。鑒於群智能廣闊的應用前景,美國和歐盟均於近幾年開始出資資助基於群智能模擬的相關研究項目,並在一些院校開設群體智能的相關課程。國內,國家自然科學基金」十五」期間學科交叉類優先資助領域中的認知科學及其信息處理的研究內容中也明確列出了群智能領域的進化、自適應與現場認知主題。
蟻群優化演算法最初用於解決TSP問題,經過多年的發展,已經陸續滲透到其他領域中,比如圖著色問題、大規模集成電路設計、通訊網路中的路由問題以及負載平衡問題、車輛調度問題等。蟻群演算法在若干領域己獲得成功的應用,其中最成功的是在組合優化問題中的應用。
在網路路由處理中,網路的流量分布不斷變化,網路鏈路或結點也會隨機地失效或重新加入。蟻群的自身催化與正向反饋機制正好符合了這類問題的求解特點,因而,蟻群演算法在網路領域得到一定應用。蟻群覓食行為所呈現出的並行與分布特性使得演算法特別適合於並行化處理。因而,實現演算法的並行化執行對於大量復雜的實際應用問題的求解來說是極具潛力的。
在某群體中若存在眾多無智能的個體,它們通過相互之間的簡單合作所表現出來的智能行為即稱為集群智能(Swarm Intelligence)。互聯網上的交流,不過是更多的神經元連接(人腦)通過互聯網相互作用的結果,光纜和路由器不過是軸突和突觸的延伸。從自組織現象的角度上看,人腦的智能和蟻群也沒有本質上的區別,單個神經元沒有智能可言,單個螞蟻也沒有,但是通過連接形成的體系,是一個智能體。(作者: 李精靈 編選:中國電子商務研究中心)

⑧ 蟻群演算法的內容

蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。

⑨ 在做用蟻群優化演算法在道路擁堵的情況下尋找最短路徑的項目,該如何在蟻群演算法的網路圖中刪去擁堵路段

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種揮發性分泌物pheromone (稱為信息素,該物質隨著時間的推移會逐漸揮發消失,信息素濃度的大小表徵路徑的遠近)來實現的,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物。有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果另開辟的道路比原來的其他道路更短,那麼,漸漸地,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。

原理

設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼地編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。

然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?

⑩ 蟻群優化演算法的使用-編碼的問題!

「蟻群演算法」學習包下載

下載地址: http://board.verycd.com/t196436.html (請使用 eMule 下載)

近一百多篇文章,打包壓縮後有 24.99MB ,基本上是從維普資料庫中下載來的,僅供學習和研究之用,請務用於商業活動或其他非法活動中,各文章版權歸原作者所有。

如果您覺得本人這樣做侵犯了您的版權,請在本帖後回復,本人會馬上刪除相應的文章。

以下是文件列表,全是 PDF 格式的:

基於蟻群優化演算法遞歸神經網路的短期負荷預測
蟻群演算法的小改進
基於蟻群演算法的無人機任務規劃
多態蟻群演算法
MCM基板互連測試的單探針路徑優化研究
改進的增強型蟻群演算法
基於雲模型理論的蟻群演算法改進研究
基於禁忌搜索與蟻群最優結合演算法的配電網規劃
自適應蟻群演算法在序列比對中的應用
基於蟻群演算法的QoS多播路由優化演算法
多目標優化問題的蟻群演算法研究
多線程蟻群演算法及其在最短路問題上的應用研究
改進的蟻群演算法在2D HP模型中的應用
製造系統通用作業計劃與蟻群演算法優化
基於混合行為蟻群演算法的研究
火力優化分配問題的小生境遺傳螞蟻演算法
基於蟻群演算法的對等網模擬器的設計與實現
基於粗粒度模型的蟻群優化並行演算法
動態躍遷轉移蟻群演算法
基於人工免疫演算法和蟻群演算法求解旅行商問題
基於信息素非同步更新的蟻群演算法
用於連續函數優化的蟻群演算法
求解復雜多階段決策問題的動態窗口蟻群優化演算法
蟻群演算法在鑄造生產配料優化中的應用
多階段輸電網路最優規劃的並行蟻群演算法
求解旅行商問題的混合粒子群優化演算法
微粒群優化演算法研究現狀及其進展
隨機攝動蟻群演算法的收斂性及其數值特性分析
廣義蟻群與粒子群結合演算法在電力系統經濟負荷分配中的應用
改進的蟻群演算法及其在TSP中的應用研究
蟻群演算法的全局收斂性研究及改進
房地產開發項目投資組合優化的改進蟻群演算法
一種改進的蟻群演算法用於灰色約束非線性規劃問題求解
一種自適應蟻群演算法及其模擬研究
一種動態自適應蟻群演算法
螞蟻群落優化演算法在蛋白質折疊二維親-疏水格點模型中的應用
用改進蟻群演算法求解函數優化問題
連續優化問題的蟻群演算法研究進展
蟻群演算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蟻群演算法在K—TSP問題中的應用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基於遺傳蟻群演算法的機器人全局路徑規劃研究
改進的蟻群演算法在礦山物流配送路徑優化中的研究
基於蟻群演算法的配電網路綜合優化方法
基於蟻群演算法的分類規則挖掘演算法
蟻群演算法在連續性空間優化問題中的應用
蟻群演算法在礦井通風系統優化設計中的應用
基於蟻群演算法的液壓土錨鑽機動力頭優化設計
改進蟻群演算法設計拉式膜片彈簧
計算機科學技術
基本蟻群演算法及其改進
TSP改進演算法及在PCB數控加工刀具軌跡中的應用
可靠性優化的蟻群演算法
對一類帶聚類特徵TSP問題的蟻群演算法求解
蟻群演算法理論及應用研究的進展
基於二進制編碼的蟻群優化演算法及其收斂性分析
蟻群演算法的理論及其應用
基於蟻群行為模擬的影像紋理分類
啟發式蟻群演算法及其在高填石路堤穩定性分析中的應用
蟻群演算法的研究現狀
一種快速全局優化的改進蟻群演算法及模擬
聚類問題的蟻群演算法
蟻群最優化——模型、演算法及應用綜述
基於信息熵的改進蟻群演算法及其應用
機載公共設備綜合管理系統任務分配演算法研究
基於改進蟻群演算法的飛機低空突防航路規劃
利用信息量留存的蟻群遺傳演算法
An Improved Heuristic Ant-Clustering Algorithm
改進型蟻群演算法在內燃機徑向滑動軸承優化設計中的應用
基於蟻群演算法的PID參數優化
基於蟻群演算法的復雜系統多故障狀態的決策
蟻群演算法在數據挖掘中的應用研究
基於蟻群演算法的基因聯接學習遺傳演算法
基於細粒度模型的並行蟻群優化演算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
運載火箭控制系統漏電故障診斷研究
混沌擾動啟發式蟻群演算法及其在邊坡非圓弧臨界滑動面搜索中的應用
蟻群演算法原理的模擬研究
Hopfield neural network based on ant system
蟻群演算法及其實現方法研究
分層實體製造激光頭切割路徑的建模與優化
配送網路規劃蟻群演算法
基於蟻群演算法的城域交通控制實時滾動優化
基於蟻群演算法的復合形法及其在邊坡穩定分析中的應用
Ant Colony Algorithm for Solving QoS Routing Problem
多產品間歇過程調度問題的建模與優化
基於蟻群演算法的兩地之間的最佳路徑選擇
蟻群演算法求解問題時易產生的誤區及對策
用雙向收斂蟻群演算法解作業車間調度問題
物流配送路徑安排問題的混合蟻群演算法
求解TSP問題的模式學習並行蟻群演算法
基於蟻群演算法的三維空間機器人路徑規劃
蟻群優化演算法及其應用
蟻群演算法不確定性分析
一種求解TSP問題的相遇蟻群演算法
基於蟻群優化演算法的彩色圖像顏色聚類的研究
鈑金件數控激光切割割嘴路徑的優化
基於蟻群演算法的圖像分割方法
一種基於蟻群演算法的聚類組合方法
圓排列問題的蟻群模擬退火演算法
智能混合優化策略及其在流水作業調度中的應用
蟻群演算法在QoS網路路由中的應用
一種改進的自適應路由演算法
基於蟻群演算法的煤炭運輸優化方法
基於蟻群智能和支持向量機的人臉性別分類方法
蟻群演算法在啤酒發酵控制優化中的應用
一種基於時延信息的多QoS快速自適應路由演算法
蟻群演算法中參數α、β、ρ設置的研究——以TSP問題為例
基於人工蟻群優化的矢量量化碼書設計演算法
具有自適應雜交特徵的蟻群演算法
蟻群演算法在原料礦粉混勻優化中的應用
基於多Agent的蟻群演算法在車間動態調度中的應用研究
用蟻群優化演算法求解中國旅行商問題
蟻群演算法在嬰兒營養米粉配方中的應用
蟻群演算法在機械優化設計中的應用
蟻群優化演算法的研究現狀及研究展望
蟻群優化演算法及其應用研究進展
蟻群演算法的理論與應用
簡單蟻群演算法的模擬分析
一種改進的蟻群演算法求解最短路徑問題
基於模式求解旅行商問題的蟻群演算法
一種求解TSP的混合型蟻群演算法
基於MATLAB的改進型基本蟻群演算法
動態蟻群演算法求解TSP問題
用蟻群演算法求解類TSP問題的研究
蟻群演算法求解連續空間優化問題的一種方法
用混合型螞蟻群演算法求解TSP問題
求解復雜TSP問題的隨機擾動蟻群演算法
基於蟻群演算法的中國旅行商問題滿意解
蟻群演算法的研究現狀和應用及螞蟻智能體的硬體實現
蟻群演算法概述
蟻群演算法的研究現狀及其展望
基於蟻群演算法的配電網網架優化規劃方法
用於一般函數優化的蟻群演算法
協同模型與遺傳演算法的集成
基於蟻群最優的輸電網路擴展規劃
自適應蟻群演算法
凸整數規劃問題的混合蟻群演算法
一種新的進化演算法—蛟群演算法
基於協同工作方式的一種蟻群布線系統

閱讀全文

與蟻群演算法參數優化相關的資料

熱點內容
壓縮文件怎麼設置打開加密 瀏覽:756
tracert命令結果詳解 瀏覽:350
唯賽思通用什麼APP 瀏覽:371
古玩哪個app好賣 瀏覽:146
u盤內容全部顯示為壓縮包 瀏覽:517
編譯固件時使用00優化 瀏覽:356
速借白條app怎麼樣 瀏覽:756
用紙張做的解壓東西教程 瀏覽:12
求圓的周長最快演算法 瀏覽:190
安卓熱點怎麼減少流量 瀏覽:270
北京代交社保用什麼app 瀏覽:855
第一眼解壓視頻 瀏覽:726
文件夾err是什麼 瀏覽:97
qt4編程pdf 瀏覽:572
區域網伺服器下如何連續看照片 瀏覽:254
經過加密的數字摘要 瀏覽:646
加密鎖9000變列印機 瀏覽:694
程序員的職業發展前途 瀏覽:639
安卓是世界上多少個程序員開發 瀏覽:45
解壓器官方免費 瀏覽:85