導航:首頁 > 源碼編譯 > 進化演算法模擬退火

進化演算法模擬退火

發布時間:2023-01-19 13:08:30

『壹』 你好,我想知道像差分進化演算法、蟻群演算法、蜂群演算法、量子進化演算法屬於進化演算法嗎

蟻群演算法和蜂群演算法屬於進化演算法沒有問題,都是源於對生物種群的進化機制的模擬
差分進化演算法也是基於種群進化的智能演算法,這個不清楚屬於進化演算法是否合適
量子進化演算法沒接觸過,不過如果是模擬量子運動,更類似模擬退火演算法,不應該屬於進化演算法
水平有限,望請指正

『貳』 article swarm optimization是什麼演算法

粒子群優化演算法。
粒子群演算法,也稱粒子群優化演算法或鳥群覓食演算法。縮寫為PSO。PSO演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單。

『叄』 非數值演算法的模擬退火演算法

模擬退火演算法來源於固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體
內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平
衡態,最後在常溫時達到基態,內能減為最小。根據Metropolis 准則,粒子在溫度T 時趨於
平衡的概率為e-ΔE/(kT),其中E 為溫度T 時的內能,ΔE 為其改變數,k 為Boltzmann 常
數。用固體退火模擬組合優化問題,將內能E 模擬為目標函數值f,溫度T 演化成控制參數
t,即得到解組合優化問題的模擬退火演算法:由初始解i 和控制參數初值t 開始,對當前解重
復「產生新解→計算目標函數差→接受或舍棄」的迭代,並逐步衰減t 值,演算法終止時的當
前解即為所得近似最優解,這是基於蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火
過程由冷卻進度表(Cooling Schele)控制,包括控制參數的初值t 及其衰減因子Δt、每個t
值時的迭代次數L 和停止條件S。
1、模擬退火演算法可以分解為解空間、目標函數和初始解三部分 。 它為問題的所有可能(可行的或包括不可行的)解的集合,它限定了初始解選取和新解產
生時的范圍。對無約束的優化問題,任一可能解(possible solution)即為一可行解(feasible
solution),因此解空間就是所有可行解的集合;而在許多組合優化問題中,一個解除滿足目
標函數最優的要求外,還必須滿足一組約束(constraint),因此在解集中可能包含一些不可行
解(infeasible so1ution)。為此,可以限定解空間僅為所有可行解的集合,即在構造解時就考
慮到對解的約束;也可允許解空間包含不可行解,而在目標函數中加上所謂罰函數(penalty
function)以「懲罰」不可行解的出現。 它是對問題的優化目標的數學描述,通常表述為若干優化目標的一個和式。目標函數的
選取必須正確體現對問題的整體優化要求。例如,如上所述,當解空間包含不可行解時,目
標函數中應包含對不可行解的罰函數項,藉此將一個有約束的優化問題轉化為無約束的優化
問題。一般地,目標函數值不一定就是問題的優化目標值,但其對應關系應是顯明的。此外,
目標函數式應當是易於計算的,這將有利於在優化過程中簡化目標函數差的計算以提高演算法
的效率。 是演算法迭代的起點,試驗表明,模擬退火演算法是魯棒的(Robust),即最終解的求得幾乎
不依賴於初始解的選取。
2、基本思想:
(1) 初始化:初始溫度T(充分大),初始解狀態S(是演算法迭代的起點), 每個T 值的迭
代次數L
(2) 對k=1,,L 做第(3)至第6 步:
(3) 產生新解S′
(4) 計算增量Δt′=C(S′)-C(S),其中C(S)為評價函數
(5) 若Δt′<0 則接受S′作為新的當前解,否則以概率exp(-Δt′/T)接受S′作為新的
當前解.
(6) 如果滿足終止條件則輸出當前解作為最優解,結束程序。
終止條件通常取為連續若干個新解都沒有被接受時終止演算法。
(7) T 逐漸減少,且T->0,然後轉第2 步。
二、遺傳演算法
遺傳演算法的基本思想是基於Darwin 進化論和Mendel 的遺傳學說的。
Darwin 進化論最重要的是適者生存原理。它認為每一物種在發展中越來越適應環境。物種
每個個體的基本特徵由後代所繼承,但後代又會產生一些異於父代的新變化。在環境變化時,
只有那些能適應環境的個體特徵方能保留下來。
Mendel 遺傳學說最重要的是基因遺傳原理。它認為遺傳以密碼方式存在細胞中,並以基因
形式包含在染色體內。每個基因有特殊的位置並控制某種特殊性質;所以,每個基因產生的
個體對環境具有某種適應性。基因突變和基因雜交可產生更適應於環境的後代。經過存優去
劣的自然淘汰,適應性高的基因結構得以保存下來。
遺傳演算法簡稱GA(Genetic Algorithm),在本質上是一種不依賴具體問題的直接搜索方法。
1、遺傳演算法的原理
遺傳演算法GA 把問題的解表示成「染色體」,在演算法中也即是以二進制編碼的串。並且,在
執行遺傳演算法之前,給出一群「染色體」,也即是假設解。然後,把這些假設解置於問題的
「環境」中,並按適者生存的原則,從中選擇出較適應環境的「染色體」進行復制,再通過
交叉,變異過程產生更適應環境的新一代「染色體」群。這樣,一代一代地進化,最後就會
收斂到最適應環境的一個「染色體」上,它就是問題的最優解。
長度為L 的n 個二進制串bi(i=1,2,,n)組成了遺傳演算法的初解群,也稱為初始群體。
在每個串中,每個二進制位就是個體染色體的基因。根據進化術語,對群體執行的操作有三
種:
(1).選擇(Selection)
這是從群體中選擇出較適應環境的個體。這些選中的個體用於繁殖下一代。故有時也稱這一
操作為再生(Reproction)。由於在選擇用於繁殖下一代的個體時,是根據個體對環境的適
應度而決定其繁殖量的,故而有時也稱為非均勻再生(differential reproction)。
(2).交叉(Crossover)
這是在選中用於繁殖下一代的個體中,對兩個不同的個體的相同位置的基因進行交換,從而
產生新的個體。
(3).變異(Mutation)
這是在選中的個體中,對個體中的某些基因執行異向轉化。在串bi 中,如果某位基因為1,
產生變異時就是把它變成0;反亦反之。
2、遺傳演算法的特點
(1).遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。
這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;
容易誤入局部最優解。遺傳演算法從串集開始搜索,覆蓋面大,利於全局擇優。
(2).遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。
由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。
遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。
(3).遺傳演算法有極強的容錯能力
遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅
速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,
遺傳演算法有很高的容錯能力。
(4).遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。
這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最
優解的產生,變異體現了全局最優解的覆蓋。
三、神經網路演算法
「人工神經網路」(ARTIFICIAL NEURAL NETWORK,簡稱A.N.N.)是在對人腦組織結構和
運行機智的認識理解基礎之上模擬其結構和智能行為的一種工程系統。早在本世紀40 年代
初期,心理學家McCulloch、數學家Pitts 就提出了人工神經網路的第一個數學模型,從此開
創了神經科學理論的研究時代。其後,F.Rosenblatt、Widrow 和Hopf、J.J.Hopfield 等學者又
先後提出了感知模型,使得人工神經網路技術得以蓬勃發展。
神經系統的基本構造是神經元(神經細胞),它是處理人體內各部分之間相互信息傳遞的基本
單元。據神經生物學家研究的結果表明,人的一個大腦一般有10 10 ~10 11
個神經元。每個神經元都由一個細胞體,一個連接其他神經元的軸突和一些向外伸出的其它
較短分支——樹突組成。軸突的功能是將本神經元的輸出信號(興奮)傳遞給別的神經元。其
末端的許多神經末梢使得興奮可以同時傳送給多個神經元。樹突的功能是接受來自其它神經
元的興奮。神經元細胞體將接受到的所有信號進行簡單地處理(如:加權求和,即對所有的
輸入信號都加以考慮且對每個信號的重視程度——體現在權值上——有所不同)後由軸突輸
出。神經元的樹突與另外的神經元的神經末梢相連的部分稱為突觸。
1、神經網路的工作原理
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫
「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而
當輸入為「B」時,輸出為「0」。所以網路學習的准則應該是:如果網路作出錯誤的的判決,
則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值
賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權
求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」
和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使
連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。如果輸出
為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在
於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網
絡輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,
網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這
兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠
作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識
別的模式也就越多。
2、人工神經網路的特點
人工神經網路是由大量的神經元廣泛互連而成的系統,它的這一結構特點決定著人工神經網
絡具有高速信息處理的能力。人腦的每個神經元大約有10 3~10 4 個樹突及相應的突
觸,一個人的大腦總計約形成10 14 ~10 15 個突觸。用神經網路的術語來說,
即是人腦具有10 14 ~10 15 個互相連接的存儲潛力。雖然每個神經元的運算
功能十分簡單,且信號傳輸速率也較低(大約100 次/秒),但由於各神經元之間的極度並行互
連功能,最終使得一個普通人的大腦在約1 秒內就能完成現行計算機至少需要數10 億次處
理步驟才能完成的任務。
人工神經網路的知識存儲容量很大。在神經網路中,知識與信息的存儲表現為神經元之間分
布式的物理聯系。它分散地表示和存儲於整個網路內的各神經元及其連線上。每個神經元及
其連線只表示一部分信息,而不是一個完整具體概念。只有通過各神經元的分布式綜合效果
才能表達出特定的概念和知識。
由於人工神經網路中神經元個數眾多以及整個網路存儲信息容量的巨大,使得它具有很強的
不確定性信息處理能力。即使輸入信息不完全、不準確或模糊不清,神經網路仍然能夠聯想
思維存在於記憶中的事物的完整圖象。只要輸入的模式接近於訓練樣本,系統就能給出正確
的推理結論。
正是因為人工神經網路的結構特點和其信息存儲的分布式特點,使得它相對於其它的判斷識
別系統,如:專家系統等,具有另一個顯著的優點:健壯性。生物神經網路不會因為個別神
經元的損失而失去對原有模式的記憶。最有力的證明是,當一個人的大腦因意外事故受輕微
損傷之後,並不會失去原有事物的全部記憶。人工神經網路也有類似的情況。因某些原因,
無論是網路的硬體實現還是軟體實現中的某個或某些神經元失效,整個網路仍然能繼續工
作。
人工神經網路是一種非線性的處理單元。只有當神經元對所有的輸入信號的綜合處理結果超
過某一門限值後才輸出一個信號。因此神經網路是一種具有高度非線性的超大規模連續時間
動力學系統。它突破了傳統的以線性處理為基礎的數字電子計算機的局限,標志著人們智能
信息處理能力和模擬人腦智能行為能力的一大飛躍。

『肆』 你好。看到你的提問,我也遇到同樣的問題。我做的是條件極值方法及其應用,能把你的給我參考下嗎

近年來,對NP難的組合優化問題尋求高效的解決方法已成為優化領域的一個極具挑戰性的研究課題。除了傳統的運籌學方法,現代啟發式方法正在得到越來越多的研究人員的關注和重視,已經廣泛地應用於基礎研究和實際工程領域。現有的大多數啟發式方法,如進化演算法、人工生命、模擬退火演算法和禁忌演算法等,都是從生物進化、統計物理和人工智慧等領域發展而來。 極值動力學優化演算法(Extremal Optimization,EO)是近年來出現的一種新穎的、通用的、基於局部搜索的啟發式方法,該方法是從統計物理學發展而來。眾所周知,模擬退火演算法(Simulated An-nealing,SA)是模擬系統處於平衡態的一種優化方法,與SA不同的是,EO演算法的理論基礎建築在Bak-Sneppen生物進化模型之上,該模型模擬處於遠離平衡態的系統,具備自組織臨界性(Self-Organized Criti-cality,SOC)。SOC是指不管系統處於何種初始狀態,不需要調整任何參數,整個系統就可以演化到一個自組織臨界狀態,在該狀態下,系統呈現出冪律分布(Power-law)。遺傳演算法通過對交配池中的所有可能解實施選擇、雜交和變異等遺傳操作來達到尋優的目的,而EO演算法總是不斷地變異近似解的最差組成部分(即所謂的極值動力學機制)來達到尋優的目的。正是這種內在的極值動力學機制,使得EO具備很強的爬山能力,尤其在求解帶有相變點(Phase transitions)的組合優化問題時EO更是展現出強大的優勢。EO演算法的特點是收斂速度快,局部搜索能力強,只有變異運算元,無可調參數(對於基本EO演算法)或只有一個可調參數τ(對於τ-EO演算法)。目前EO演算法已經被成功地應用於求解一些NP難的組合優化問題,如二分圖,旅行商問題,圖著色,旋轉玻璃和動態組合優化問題。但是,國外對於EO演算法在數值優化和多目標優化問題方面的研究並不多,國內學者對EO演算法的研究更少之甚少。 本文主要研究求解無約束或帶約束數值優化問題的EO演算法,並將求解單目標優化問題的EO演算法擴展到多目標優化領域。本文的主要工作包括: (1)本文從分析EO演算法的機理入手,提出了一種求解約束連續優化問題的新演算法――帶自適應Le′vy變異的基於種群的EO演算法(PEO),通過求解6個經典的約束連續優化問題,實驗結果證實了PEO能與3種流行的優化演算法相匹敵,不失為一種求解數值約束優化問題的有效方法。 (2)為了彌補標准粒子群演算法容易陷入局部極值點的不足,本文提出了一種新穎的混合粒子群-極值動力學優化演算法(PSO-EO),該演算法有效地結合了PSO的全局搜索能力和EO的局部搜索能力,使得標准PSO演算法可以跳出局部極值點,從而彌補了標准PSO演算法的不足。迄今為止,還沒有文獻提出將EO和PSO結合起來的優化演算法。通過求解6個經典的復雜單峰/多峰函數,PSO-EO演算法被證實了具有避免早熟收斂的特點,是一種求解復雜數值優化問題的有效演算法。 (3)由於EO演算法只有變異操作,因此,變異運算元對EO演算法的性能好壞起到了重要作用。本文將高斯變異和柯西變異有效地結合起來,提出了一種新穎的適合於求解數值優化問題的變異運算元――混合高斯-柯西變異,該運算元將「粗調」和「微調」很好地結合起來,並且省去了決定何時在不同變異之間進行切換的麻煩。 (4)本文將基於Pareto支配概念的適應度評價方法引入到EO,提出了一種新穎的多目標極值動力學優化方法(Multiobjective Extremal Op-timization,MOEO),使EO演算法成功地擴展到多目標優化領域。接著,用MOEO演算法解決了多目標連續優化問題(包括無約束問題和帶約束問題),實驗結果表明MOEO非常適合於求解多目標連續優化問題,能夠與3種經典的多目標進化演算法(即NSGA-II,SPEA2和PAES)相匹敵。最後,提出了一種適合於求解多目標0/1背包問題的MOEO演算法。實驗結果表明MOEO演算法具有快速的收斂能力和良好的多樣化性能,具有與3種經典的多目標進化演算法(即NSGA,SPEA和NPGA)相競爭的優勢。 (5)本文利用MOEO演算法解決了4個經典的機械組件設計問題。實驗結果表明:MOEO演算法找到的非劣解集在收斂性和多樣性方面有著良好的性能,能夠與3種經典的多目標進化演算法(NSGA-II,SPEA2和PAES)相匹敵。因此,MOEO演算法是一個能解決實際工程優化問題的行之有效的方法。 (6)本文將MOEO演算法應用於求解5個經典的股票投資組合優化問題。實驗結果表明:MOEO找到的近似Pareto前沿具有良好的收斂性能和多樣化性能,能夠與演算法NSGA-II和SPEA2相匹敵,比PAES更優。因此,MOEO演算法是一個能解決實際管理決策優化問題的有效方法。

『伍』 遺傳演算法、數值演算法、爬山演算法、模擬退火 各自的優缺點

遺傳演算法:其優點是能很好地處理約束,跳出局部最優,最終得到全局最優解。缺點是收斂速度慢,局部搜索能力弱,運行時間長,容易受到參數的影響。

模擬退火:具有局部搜索能力強、運行時間短的優點。缺點是全局搜索能力差,容易受到參數的影響。

爬山演算法:顯然爬山演算法簡單、效率高,但在處理多約束大規模問題時,往往不能得到較好的解決方案。

數值演算法:這個數值演算法的含義太寬泛了,指的是哪種數值演算法,陣列演算法與爬山演算法一樣,各有優缺點。

(5)進化演算法模擬退火擴展閱讀:

注意事項:

遺傳演算法的機制比較復雜,在Matlab中已經用工具箱中的命令進行了打包,通過調用可以非常方便的使用遺傳演算法。

函數GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x為最優解,Fval為最優值,@Fitnessness為目標函數,Nvars為自變數個數,options為其他屬性設置。系統的默認值是最小值,所以函數文檔中應該加上一個減號。

要設置選項,您需要以下函數:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通過該函數,可以確定一些遺傳演算法的參數。

『陸』 計算機編程常用演算法有哪些

貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。

模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html

『柒』 模擬退火演算法的意義

退火演算法具有計算過程簡單、通用、魯棒性強、適合並行處理等優點,可用於求解復雜的非線性優化問題。缺點: 收斂速度慢,執行時間長,演算法性能與初值有關,參數敏感。Pso: 進化支持計算的優點在於它能處理一些傳統方法無法處理的例子,如不可微節點傳遞函數或其固有的梯度信息缺失。缺點是: 它在某些問題上表現不是特別好。圖2。網路權重容量的編碼和遺傳運算元的選擇有時比較麻煩

『捌』 模擬退火法(SA)和遺傳演算法(GA)的專業解釋

n局部搜索,模擬退火,遺傳演算法,禁忌搜索的形象比喻:

為了找出地球上最高的山,一群有志氣的兔子們開始想辦法。
1.兔子朝著比現在高的地方跳去。他們找到了不遠處的最高山峰。但是這座山不一定是珠穆朗瑪峰。這就是局部搜索,它不能保證局部最優值就是全局最優值。
2.兔子喝醉了。他隨機地跳了很長時間。這期間,它可能走向高處,也可能踏入平地。但是,他漸漸清醒了並朝最高方向跳去。這就是模擬退火。
3.兔子們吃了失憶葯片,並被發射到太空,然後隨機落到了地球上的某些地方。他們不知道自己的使命是什麼。但是,如果你過幾年就殺死一部分海拔低的兔子,多產的兔子們自己就會找到珠穆朗瑪峰。這就是遺傳演算法。
4.兔子們知道一個兔的力量是渺小的。他們互相轉告著,哪裡的山已經找過,並且找過的每一座山他們都留下一隻兔子做記號。他們制定了下一步去哪裡尋找的策略。這就是禁忌搜索。

『玖』 智能計算/計算智能、仿生演算法、啟發式演算法的區別與關系

我一個個講好了,
1)啟發式演算法:一個基於直觀或經驗構造的演算法,在可接受的花費(指計算時間和空間)下給出待解決組合優化問題每一個實例的一個可行解,該可行解與最優解的偏離程度不一定事先可以預計。意思就是說,啟發式演算法是根據經驗或者某些規則來解決問題,它求得的問題的解不一定是最優解,很有可能是近似解。這個解與最優解近似到什麼程度,不能確定。相對於啟發式演算法,最優化演算法或者精確演算法(比如說分支定界法、動態規劃法等則能求得最優解)。元啟發式演算法是啟發式演算法中比較通用的一種高級一點的演算法,主要有遺傳演算法、禁忌搜索演算法、模擬退火演算法、蟻群演算法、粒子群演算法、變鄰域搜索演算法、人工神經網路、人工免疫演算法、差分進化演算法等。這些演算法可以在合理的計算資源條件下給出較高質量的解。
2)仿生演算法:是一類模擬自然生物進化或者群體社會行為的隨機搜索方法的統稱。由於這些演算法求解時不依賴於梯度信息,故其應用范圍較廣,特別適用於傳統方法難以解決的大規模復雜優化問題。主要有:遺傳演算法、人工神經網路、蟻群演算法、蛙跳演算法、粒子群優化演算法等。這些演算法均是模仿生物進化、神經網路系統、螞蟻尋路、鳥群覓食等生物行為。故叫仿生演算法。
3)智能計算:也成為計算智能,包括遺傳演算法、模擬退火演算法、禁忌搜索演算法、進化演算法、蟻群演算法、人工魚群演算法,粒子群演算法、混合智能演算法、免疫演算法、神經網路、機器學習、生物計算、DNA計算、量子計算、模糊邏輯、模式識別、知識發現、數據挖掘等。智能計算是以數據為基礎,通過訓練建立聯系,然後進行問題求解。
所以說,你接觸的很多演算法,既是仿生演算法,又是啟發式演算法,又是智能演算法,這都對。分類方法不同而已。

這次樓主不要再老花了哈!

『拾』 模擬退火演算法的簡介

模擬退火演算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人於1953年提出。1983 年,S. Kirkpatrick 等成功地將退火思想引入到組合優化領域。它是基於Monte-Carlo迭代求解策略的一種隨機尋優演算法,其出發點是基於物理中固體物質的退火過程與一般組合優化問題之間的相似性。模擬退火演算法從某一較高初溫出發,伴隨溫度參數的不斷下降,結合概率突跳特性在解空間中隨機尋找目標函數的全局最優解,即在局部最優解能概率性地跳出並最終趨於全局最優。模擬退火演算法是一種通用的優化演算法,理論上演算法具有概率的全局優化性能,目前已在工程中得到了廣泛應用,諸如VLSI、生產調度、控制工程、機器學習、神經網路、信號處理等領域。
模擬退火演算法是通過賦予搜索過程一種時變且最終趨於零的概率突跳性,從而可有效避免陷入局部極小並最終趨於全局最優的串列結構的優化演算法。

閱讀全文

與進化演算法模擬退火相關的資料

熱點內容
做什麼app賺錢 瀏覽:83
博途編譯失敗聯系客戶支持部門 瀏覽:926
金蝶旗艦版編譯 瀏覽:50
萬象伺服器斷電後啟動不了怎麼辦 瀏覽:356
我的世界蘋果版的2b2t伺服器地址咋查 瀏覽:95
xlsx轉換pdf 瀏覽:98
3dmax擠出命令英語 瀏覽:903
靶心率的定義和演算法 瀏覽:514
3d模術師app哪裡下載 瀏覽:474
php中文api文檔 瀏覽:458
安卓設計怎麼加入輸入框 瀏覽:185
主根伺服器什麼時候開始 瀏覽:738
奇門遁甲完整版pdf 瀏覽:903
app軟體怎麼用的 瀏覽:802
電子書pdf購買 瀏覽:194
浪潮伺服器如何做系統 瀏覽:111
冒險島img格式加密 瀏覽:596
我的世界手游如何復制命令 瀏覽:659
天刀自動彈琴腳本源碼 瀏覽:971
打開其它app微信怎麼收不到 瀏覽:447