Ⅰ 動態規劃中的0-1背包問題怎麼去理解要求給出具體實例和詳細步驟。。。
引用一個朋友的博文回答你的問題。
Description
試設計一個用回溯法搜索子集空間樹的函數。該函數的參數包括結點可行性判定函數和
上界函數等必要的函數,並將此函數用於解0-1背包問題。
0-1 背包問題描述如下:給定n 種物品和一個背包。物品i 的重量是 wi ,其價值為 vi ,
背包的容量為C。應如何選擇裝入背包的物品,使得裝入背包中物品的總價值最大?
在選擇裝入背包的物品時,對每種物品i只有2 種選擇,即裝入背包或不裝入背包。不能
將物品i 裝入背包多次,也不能只裝入部分的物品i。
Input
由文件input.txt給出輸入數據。第一行有2個正整數n和c。n是物品數,c是背包的容
量。接下來的1 行中有n個正整數,表示物品的價值。第3 行中有n個正整數,表示物品的
重量。
Output
將計算出的裝入背包物品的最大價值和最優裝入方案輸出到文件output.txt。
Sample Input
5 10
6 3 5 4 6
2 2 6 5 4
Sample Output
15
1 1 0 0 1
Source
//code c++
#include
#include
#include
int min(int w,int c)
{int temp;
if (w<c) temp=w;
else
temp=c;
return temp;
}
int max(int w,int c)
{
int temp;
if (w>c) temp=w;
else
temp=c;
return temp;
}
void knapsack(int v[],int w[],int c,int n,int**m) //求最優值
{
int jmax=min(w[n]-1,c);
for(int j=0;j<=jmax;j++)
m[n][j]=0;
for(int jj=w[n];jj<=c;jj++)
m[n][jj]=v[n];
for(int i=n-1;i>1;i--){
jmax=min(w[i]-1,c);
for(int j=0;j<=jmax;j++)
m[i][j]=m[i+1][j];
for(int jj=w[i];jj<=c;jj++)
m[i][jj]=max(m[i+1][jj],m[i+1][jj-w[i]]+v[i]);
}
m[1][c]=m[2][c];
if(c>=w[1])
m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);
cout<<m[1][c]<<endl;
}
int traceback(int **m,int w[],int c,int n,int x[]) //回代,求最優解
{
//cout<<"得到的一組最優解如下:"<<endl;
for(int i=1;i<n;i++)
if(m[i][c]==m[i+1][c]) x[i]=0;
else {x[i]=1;
c-=w[i];}
x[n]=(m[n][c])?1:0;
for(int y=1;y<=n;y++)
{
cout<<x[y]<<" ";
}
cout<<endl;
return x[n];
}
int main()
{
int n,c;
int **m;
cin>>n>>c;
int *v=new int[n+1];
for(int i=1;i<=n;i++)
cin>>v[i];
int *w=new int[n+1];
for(int j=1;j<=n;j++)
cin>>w[j];
int *x=new int[n+1];
m=new int*[n+1]; //動態的分配二維數組
for(int p=0;p<n+1;p++)
{
m[p]=new int[c+1];
}
knapsack(v,w,c,n,m);
traceback(m,w,c,n,x);
delete []x;
delete []w;
delete []v;
return 0;
}
Ⅱ 0-1背包問題的多種解法代碼(動態規劃、貪心法、回溯法、分支限界法)
一.動態規劃求解0-1背包問題
/************************************************************************/
/* 0-1背包問題:
/* 給定n種物品和一個背包
/* 物品i的重量為wi,其價值為vi
/* 背包的容量為c
/* 應如何選擇裝入背包的物品,使得裝入背包中的物品
/* 的總價值最大?
/* 註:在選擇裝入背包的物品時,對物品i只有兩種選擇,
/* 即裝入或不裝入背包。不能將物品i裝入多次,也
/* 不能只裝入部分的物品i。
/*
/* 1. 0-1背包問題的形式化描述:
/* 給定c>0, wi>0, vi>0, 0<=i<=n,要求找到一個n元的
/* 0-1向量(x1, x2, ..., xn), 使得:
/* max sum_{i=1 to n} (vi*xi),且滿足如下約束:
/* (1) sum_{i=1 to n} (wi*xi) <= c
/* (2) xi∈{0, 1}, 1<=i<=n
/*
/* 2. 0-1背包問題的求解
/* 0-1背包問題具有最優子結構性質和子問題重疊性質,適於
/* 採用動態規劃方法求解
/*
/* 2.1 最優子結構性質
/* 設(y1,y2,...,yn)是給定0-1背包問題的一個最優解,則必有
/* 結論,(y2,y3,...,yn)是如下子問題的一個最優解:
/* max sum_{i=2 to n} (vi*xi)
/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1
/* (2) xi∈{0, 1}, 2<=i<=n
/* 因為如若不然,則該子問題存在一個最優解(z2,z3,...,zn),
/* 而(y2,y3,...,yn)不是其最優解。那麼有:
/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)
/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 進一步有:
/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)
/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 這說明:(y1,z2,z3,...zn)是所給0-1背包問題的更優解,那麼
/* 說明(y1,y2,...,yn)不是問題的最優解,與前提矛盾,所以最優
/* 子結構性質成立。
/*
/* 2.2 子問題重疊性質
/* 設所給0-1背包問題的子問題 P(i,j)為:
/* max sum_{k=i to n} (vk*xk)
/* (1) sum_{k=i to n} (wk*xk) <= j
/* (2) xk∈{0, 1}, i<=k<=n
/* 問題P(i,j)是背包容量為j、可選物品為i,i+1,...,n時的子問題
/* 設m(i,j)是子問題P(i,j)的最優值,即最大總價值。則根據最優
/* 子結構性質,可以建立m(i,j)的遞歸式:
/* a. 遞歸初始 m(n,j)
/* //背包容量為j、可選物品只有n,若背包容量j大於物品n的
/* //重量,則直接裝入;否則無法裝入。
/* m(n,j) = vn, j>=wn
/* m(n,j) = 0, 0<=j<wn
/* b. 遞歸式 m(i,j)
/* //背包容量為j、可選物品為i,i+1,...,n
/* //如果背包容量j<wi,則根本裝不進物品i,所以有:
/* m(i,j) = m(i+1,j), 0<=j<wi
/* //如果j>=wi,則在不裝物品i和裝入物品i之間做出選擇
/* 不裝物品i的最優值:m(i+1,j)
/* 裝入物品i的最優值:m(i+1, j-wi) + vi
/* 所以:
/* m(i,j) = max {m(i+1,j), m(i+1, j-wi) + vi}, j>=wi
/*
/************************************************************************/
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
template <typename Type>
void Knapsack(Type* v, int *w, int c, int n, Type **m)
{
//遞歸初始條件
int jMax = min(w[n] - 1, c);
for (int j=0; j<=jMax; j++) {
m[n][j] = 0;
}
for (j=w[n]; j<=c; j++) {
m[n][j] = v[n];
}
//i從2到n-1,分別對j>=wi和0<=j<wi即使m(i,j)
for (int i=n-1; i>1; i--) {
jMax = min(w[i] - 1, c);
for (int j=0; j<=jMax; j++) {
m[i][j] = m[i+1][j];
}
for (j=w[i]; j<=c; j++) {
m[i][j] = max(m[i+1][j], m[i+1][j-w[i]]+v[i]);
}
}
m[1][c] = m[2][c];
if (c >= w[1]) {
m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);
}
}
template <typename Type>
void TraceBack(Type **m, int *w, int c, int n, int* x)
{
for (int i=1; i<n; i++) {
if(m[i][c] == m[i+1][c]) x[i] = 0;
else {
x[i] = 1;
c -= w[i];
}
}
x[n] = (m[n][c])? 1:0;
}
int main(int argc, char* argv[])
{
int n = 5;
int w[6] = {-1, 2, 2, 6, 5, 4};
int v[6] = {-1, 6, 3, 5, 4, 6};
int c = 10;
int **ppm = new int*[n+1];
for (int i=0; i<n+1; i++) {
ppm[i] = new int[c+1];
}
int x[6];
Knapsack<int>(v, w, c, n, ppm);
TraceBack<int>(ppm, w, c, n, x);
return 0;
}
二.貪心演算法求解0-1背包問題
1.貪心法的基本思路:
——從問題的某一個初始解出發逐步逼近給定的目標,以盡可能快的地求得更好的解。當達到某演算法中的某一步不能再繼續前進時,演算法停止。
該演算法存在問題:
1).不能保證求得的最後解是最佳的;
2).不能用來求最大或最小解問題;
3).只能求滿足某些約束條件的可行解的范圍。
實現該演算法的過程:
從問題的某一初始解出發;
while 能朝給定總目標前進一步 do
求出可行解的一個解元素;
由所有解元素組合成問題的一個可行解;
2.例題分析
1).[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
價值 10 40 30 50 35 40 30
分析:
目標函數: ∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150)
(1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
(2)每次挑選所佔空間最小的物品裝入是否能得到最優解?
(3)每次選取單位容量價值最大的物品,成為解本題的策略。
<程序代碼:>(環境:c++)
#include<iostream.h>
#define max 100 //最多物品數
void sort (int n,float a[max],float b[max]) //按價值密度排序
{
int j,h,k;
float t1,t2,t3,c[max];
for(k=1;k<=n;k++)
c[k]=a[k]/b[k];
for(h=1;h<n;h++)
for(j=1;j<=n-h;j++)
if(c[j]<c[j+1])
{t1=a[j];a[j]=a[j+1];a[j+1]=t1;
t2=b[j];b[j]=b[j+1];b[j+1]=t2;
t3=c[j];c[j]=c[j+1];c[j+1]=t3;
}
}
void knapsack(int n,float limitw,float v[max],float w[max],int x[max])
{float c1; //c1為背包剩餘可裝載重量
int i;
sort(n,v,w); //物品按價值密度排序
c1=limitw;
for(i=1;i<=n;i++)
{
if(w[i]>c1)break;
x[i]=1; //x[i]為1時,物品i在解中
c1=c1-w[i];
}
}
void main()
{int n,i,x[max];
float v[max],w[max],totalv=0,totalw=0,limitw;
cout<<"請輸入n和limitw:";
cin>>n >>limitw;
for(i=1;i<=n;i++)
x[i]=0; //物品選擇情況表初始化為0
cout<<"請依次輸入物品的價值:"<<endl;
for(i=1;i<=n;i++)
cin>>v[i];
cout<<endl;
cout<<"請依次輸入物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<endl;
knapsack (n,limitw,v,w,x);
cout<<"the selection is:";
for(i=1;i<=n;i++)
{
cout<<x[i];
if(x[i]==1)
totalw=totalw+w[i];
}
cout<<endl;
cout<<"背包的總重量為:"<<totalw<<endl; //背包所裝載總重量
cout<<"背包的總價值為:"<<totalv<<endl; //背包的總價值
}
三.回溯演算法求解0-1背包問題
1.0-l背包問題是子集選取問題。
一般情況下,0-1背包問題是NP難題。0-1背包
問題的解空間可用子集樹表示。解0-1背包問題的回溯法與裝載問題的回溯法十分類
似。在搜索解空間樹時,只要其左兒子結點是一個可行結點,搜索就進入其左子樹。當
右子樹有可能包含最優解時才進入右子樹搜索。否則將右子樹剪去。設r是當前剩餘
物品價值總和;cp是當前價值;bestp是當前最優價值。當cp+r≤bestp時,可剪去右
子樹。計算右子樹中解的上界的更好方法是將剩餘物品依其單位重量價值排序,然後
依次裝入物品,直至裝不下時,再裝入該物品的一部分而裝滿背包。由此得到的價值是
右子樹中解的上界。
2.解決辦法思路:
為了便於計算上界,可先將物品依其單位重量價值從大到小排序,此後只要順序考
察各物品即可。在實現時,由bound計算當前結點處的上界。在搜索解空間樹時,只要其左兒子節點是一個可行結點,搜索就進入左子樹,在右子樹中有可能包含最優解是才進入右子樹搜索。否則將右子樹剪去。
回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。
2.演算法框架:
a.問題的解空間:應用回溯法解問題時,首先應明確定義問題的解空間。問題的解空間應到少包含問題的一個(最優)解。
b.回溯法的基本思想:確定了解空間的組織結構後,回溯法就從開始結點(根結點)出發,以深度優先的方式搜索整個解空間。這個開始結點就成為一個活結點,同時也成為當前的擴展結點。在當前的擴展結點處,搜索向縱深方向移至一個新結點。這個新結點就成為一個新的活結點,並成為當前擴展結點。如果在當前的擴展結點處不能再向縱深方向移動,則當前擴展結點就成為死結點。換句話說,這個結點不再是一個活結點。此時,應往回移動(回溯)至最近的一個活結點處,並使這個活結點成為當前的擴展結點。回溯法即以這種工作方式遞歸地在解空間中搜索,直至找到所要求的解或解空間中已沒有活結點時為止。
3.運用回溯法解題通常包含以下三個步驟:
a.針對所給問題,定義問題的解空間;
b.確定易於搜索的解空間結構;
c.以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索;
#include<iostream>
using namespace std;
class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );
public:
void print()
{
for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c;//背包容量
int n; //物品數
int *w;//物品重量數組
int *p;//物品價值數組
int cw;//當前重量
int cp;//當前價值
int bestp;//當前最優值
int *bestx;//當前最優解
int *x;//當前解
};
int Knap::Bound(int i)
{
//計算上界
int cleft=c-cw;//剩餘容量
int b=cp;
//以物品單位重量價值遞減序裝入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//裝滿背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}
void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子樹
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子樹
{
x[i]=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n)
{
//為Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//裝入所有物品
//依物品單位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;
}
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
char k;
cout<<"0-1背包問題——回溯法 "<<endl;
cout<<" by zbqplayer "<<endl;
while(k)
{
cout<<"請輸入背包容量(c):"<<endl;
cin>>c;
cout<<"請輸入物品的個數(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"請輸入物品的價值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
cout<<"請輸入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"最優解為(bestx):"<<endl;
cout<<"最優值為(bestp):"<<endl;
cout<<Knapsack(p,w,c,n)<<endl;
cout<<"[s] 重新開始"<<endl;
cout<<"[q] 退出"<<endl;
cin>>k;
}
四.分支限界法求解0-1背包問題
1.問題描述:已知有N個物品和一個可以容納M重量的背包,每種物品I的重量為WEIGHT,一個只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的總效益最大。
2.設計思想與分析:對物品的選取與否構成一棵解樹,左子樹表示不裝入,右表示裝入,通過檢索問題的解樹得出最優解,並用結點上界殺死不符合要求的結點。
#include <iostream.h>
struct good
{
int weight;
int benefit;
int flag;//是否可以裝入標記
};
int number=0;//物品數量
int upbound=0;
int curp=0, curw=0;//當前效益值與重量
int maxweight=0;
good *bag=NULL;
void Init_good()
{
bag=new good [number];
for(int i=0; i<number; i++)
{
cout<<"請輸入第件"<<i+1<<"物品的重量:";
cin>>bag[i].weight;
cout<<"請輸入第件"<<i+1<<"物品的效益:";
cin>>bag[i].benefit;
bag[i].flag=0;//初始標志為不裝入背包
cout<<endl;
}
}
int getbound(int num, int *bound_u)//返回本結點的c限界和u限界
{
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++)
{
w=w+bag[num].weight;
p=w+bag[num].benefit;
}
*bound_u=p+bag[num].benefit;
return ( p+bag[num].benefit*((maxweight-w)/bag[num].weight) );
}
void LCbag()
{
int bound_u=0, bound_c=0;//當前結點的c限界和u限界
for(int i=0; i<number; i++)//逐層遍歷解樹決定是否裝入各個物品
{
if( ( bound_c=getbound(i+1, &bound_u) )>upbound )//遍歷左子樹
upbound=bound_u;//更改已有u限界,不更改標志
if( getbound(i, &bound_u)>bound_c )//遍歷右子樹
//若裝入,判斷右子樹的c限界是否大於左子樹根的c限界,是則裝入
{
upbound=bound_u;//更改已有u限界
curp=curp+bag[i].benefit;
curw=curw+bag[i].weight;//從已有重量和效益加上新物品
bag[i].flag=1;//標記為裝入
}
}
}
void Display()
{
cout<<"可以放入背包的物品的編號為:";
for(int i=0; i<number; i++)
if(bag[i].flag>0)
cout<<i+1<<" ";
cout<<endl;
delete []bag;
}
Ⅲ 0/1背包問題——動態規劃、回溯、分支限界法對比
假定n個商品重量分別為w 0 , w 1 , ..., w n-1 ,價值分別為p 0 , p 1 , ..., p n-1 ,背包載重量為M。怎樣選擇商品組合,使得價值最高?
最大值的估演算法(跟分支限界法本質上是一樣的)
向上回溯的方法
w_cur——表示當前正在搜索的部分解中轉入的總重量
p_cur——當前總價值
p_est——部分解可能達到的最大價值的估計值
p_total——當前搜索到的所有可行解中的最大價值,是當前目標函數的上界
y k 、x k ——部分解的第k個分量及其副本
k——表示當前搜索深度
M = 50
商品重量分別為5,15,25,27,30
商品價值分別為12,30,44,46,50
上面已經按照單位重量價值遞減順序排列。
每個結點都包含如下信息:
S 1 ——當前選擇裝入背包的商品集合
S 2 ——當前不選擇裝入背包的商品集合
S 3 ——當前尚待選擇的商品集合
k——搜索深度
b——上界
bound——一個可行解的取值,當做剪枝的標准
輸入描述:
輸出描述:
輸入例子:
輸出例子:
Ⅳ 動態規劃演算法實現求解0/1背包問題程序,輸入應該放入背包中的物品的序號及背包中的總價值。 附:初始化
#include <stdio.h>
int list[200][200];
int x[15];
int n;
int c;
int s;
int max (int a,int b)
{
if(a>b)return a;
else return b;
}
int ks(int n,int weight[],int value[],int x[],int c)
{
int i,j;
for(i=0;i<=n;i++)
list[i][0]=0;
for(j=0;j<=c;j++)
list[0][i]=0;
for(i=0;i<=n-1;i++)
for(j=0;j<=c;j++)
if(j<weight[i])
list[i][j]=list[i-1][j];
else
list[i][j]=max(list[i-1][j],list[i-1][j-weight[i]]+value[i]);
j=c;
for(i=n-1;i>=0;i--){
if(list[i][j]>list[i-1][j]){
x[i]=1;
j=j-weight[i];
}else x[i]=0;
}
printf("背包中的物品序列號:\n");
for(i=0;i<n;i++)
printf("%d\n",x[i]);
return list[n-1][c]; }
void main(){
int weight[15]={2,2,6,5,4};
int value[15]={6,3,5,4,6};
c=10;
n=5;
s=ks(n,weight,value,x,c);
printf("背包中的總價值:\n");
printf("%d\n",s);
}
Ⅳ 動態規劃的0-1背包問題,請高手解釋下代碼
這是清華演算法設計C++描述上的代碼吧?呵呵 我正巧讀過。
簡單解釋一下吧 在解釋之前你要知道動態規劃是一個自底向上的過程
這個演算法用到了一個二維數組m[][] 來存儲各個坐標的價值信息 所以橫坐標表示背包號碼 縱坐標表示背包容量從1到c
注意該演算法只能限制c是整數且每個背包的重量也是整數.
然後int jMax=min(w[n]-1,c);找出w[n]-1和 c之間的小者。
for(int j=0;j<=jMax;j++) m[n][j]=0;表示第n個物品不選 那麼所以價值為0
for(int j=w[n];j<=c;j++) m[n][j]=v[n];表示第n個物品選擇 所以價值為v[n]
for(int i=n-1;i>1;i--){
jMax=min(w[i]-1,c);
for(int j=0;j<=jMax;j++) m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}
表示自n-1到2逐層計算各m[i][j]的值 每一個m[i][j]的值都是根據上一層也就是m[i][j+1] 得到的 最後處理個第一層的邊界條件 m[1][c]就是所得答案了
Ⅵ 用動態規劃演算法和貪婪演算法求解01背包問題的區別
首先這兩個演算法是用來分別解決不同類型的背包問題的,不存在哪個更優的問題。 當一件背包物品可以分割的時候,使用貪心演算法,按物品的單位體積的價值排序,從大到小取即可。 當一件背包物品不可分割的時候,(因為不可分割,所以就算按物品的單位體積的價值大的先取也不一定是最優解)此時使用貪心是不對的,應使用動態規劃。
Ⅶ 關於C++ 01背包問題
1.摘要
以背包問題為例,介紹了貪心法與動態規劃的關系以及兩個方案在解決背包問題上的比較。貪心法什麼時候能取到最優界並無一般理論,但對於普通背包問題我們有一個完美的結果——貪心法可取到最優解。介紹了其它一些對背包問題的研究或者拓展。
2.介紹
貪心演算法是我們在《演算法設計技巧與分析》這門課中所學習到的幾種重要的演算法之一,顧名思義,貪心演算法總是作出在當前看來最好的選擇。也就是該演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的從局部的最優選擇,尋找到解決問題的次優解的方法。雖然我們希望貪心演算法得到的最終結果也是整體最優的,但是在某些情況下,該演算法得到的只是問題的最優解的近似。
3.演算法思想:
貪心法的基本思路:
——從問題的某一個初始解出發逐步逼近給定的目標,以盡可能快的地求得更好的解。當達到某演算法中的某一步不能再繼續前進時,演算法停止。
該演算法存在問題:
1.不能保證求得的最後解是最佳的;
2.不能用來求最大或最小解問題;
3.只能求滿足某些約束條件的可行解的范圍。
實現該演算法的過程:
在約束下最大。
(2)動態規劃解決方案:是解決0/1背包問題的最優解
(i)若i=0或j=0,V[i,j] = 0
(ii)若j<si, V[i,j] = V[i-1,j](僅用最優的方法,選取前i-1項物品裝入體積為j的背包,因為第i項體積大於j,裝不下這一項,所以背包裡面的i-1項就達到最大值)
(iii)若i>0和j>=si, Max{V[i-1,j],V[i-1,j-si]+vi} (第一種情況是包中的i-1項已經達到最大值,第二種情況是i-1項佔j-si的體積再加上第i項的總的價值,取這兩種情況的最大值。)
//sj和vj分別為第j項物品的體積和價值,C是總體積限制。
//V[i,j]表示從前i項{u1,u2,…,un}中取出來的裝入體積為j的背包的物品的最大//價值。[13]
(3)貪心演算法解決背包問題有幾種策略:
(i)一種貪婪准則為:從剩餘的物品中,選出可以裝入背包的價值最大的物品,利用這種規則,價值最大的物品首先被裝入(假設有足夠容量),然後是下一個價值最大的物品,如此繼續下去。這種策略不能保證得到最優解。例如,考慮n=2, w=[100,10,10], p =[20,15,15], c = 105。當利用價值貪婪准則時,獲得的解為x= [ 1 , 0 , 0 ],這種方案的總價值為2 0。而最優解為[ 0 , 1 , 1 ],其總價值為3 0。
(ii)另一種方案是重量貪婪准則是:從剩下的物品中選擇可裝入背包的重量最小的物品。雖然這種規則對於前面的例子能產生最優解,但在一般情況下則不一定能得到最優解。考慮n= 2 ,w=[10,20], p=[5,100], c= 2 5。當利用重量貪婪策略時,獲得的解為x =[1,0],比最優解[ 0 , 1 ]要差。
(iii)還有一種貪婪准則,就是我們教材上提到的,認為,每一項計算yi=vi/si,即該項值和大小的比,再按比值的降序來排序,從第一項開始裝背包,然後是第二項,依次類推,盡可能的多放,直到裝滿背包。
有的參考資料也稱為價值密度pi/wi貪婪演算法。這種策略也不能保證得到最優解。利用此策略試解n= 3 ,w=[20,15,15], p=[40,25,25], c=30時的最優解。雖然按pi /wi非遞(增)減的次序裝入物品不能保證得到最優解,但它是一個直覺上近似的解。
而且這是解決普通背包問題的最優解,因為在選擇物品i裝入背包時,可以選擇物品i的一部分,而不一定要全部裝入背包,1≤i≤n。
如圖1,大體上說明了動態規劃解決的0/1背包問題和貪心演算法解決的問題之間的區別,
圖1
(4)貪心演算法解決背包問題的演算法實現:
代碼如下:
#include<iostream.h>
structgoodinfo
{
floatp;//物品效益
floatw;//物品重量
floatX;//物品該放的數量
intflag;//物品編號
};//物品信息結構體
voidInsertionsort(goodinfogoods[],intn)
{//插入排序,按pi/wi價值收益進行排序,一般教材上按冒泡排序
intj,i;
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].p>goods[i].p)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
}//按物品效益,重量比值做升序排列
voidbag(goodinfogoods[],floatM,intn)
{
floatcu;
inti,j;
for(i=1;i<=n;i++)
goods[i].X=0;
cu=M;//背包剩餘容量
for(i=1;i<n;i++)
{
if(goods[i].w>cu)//當該物品重量大與剩餘容量跳出
break;
goods[i].X=1;
cu=cu-goods[i].w;//確定背包新的剩餘容量
}
if(i<=n)
goods[i].X=cu/goods[i].w;//該物品所要放的量
/*按物品編號做降序排列*/
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].flag<goods[i].flag)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
///////////////////////////////////////////
cout<<"最優解為:"<<endl;
for(i=1;i<=n;i++)
{
cout<<"第"<<i<<"件物品要放:";
cout<<goods[i].X<<endl;
}
}
voidmain()
{
cout<<"|--------運用貪心法解背包問題---------|"<<endl;
intj,n;floatM;
goodinfo*goods;//定義一個指針
while(j)
{
cout<<"請輸入物品的總數量:";
cin>>n;
goods=newstructgoodinfo[n+1];//
cout<<"請輸入背包的最大容量:";
cin>>M;
cout<<endl;
inti;
for(i=1;i<=n;i++)
{goods[i].flag=i;
cout<<"請輸入第"<<i<<"件物品的重量:";
cin>>goods[i].w;
cout<<"請輸入第"<<i<<"件物品的效益:";
cin>>goods[i].p;
goods[i].p=goods[i].p/goods[i].w;//得出物品的效益,重量比
cout<<endl;
}
Insertionsort(goods,n);
bag(goods,M,n);
cout<<"press<1>torunagian"<<endl;
cout<<"press<0>toexit"<<endl;
cin>>j;
}
}
Ⅷ 用動態規劃演算法怎樣求解01背包問題
動態規劃主要解決的是多階段的決策問題。
01背包中,狀態為背包剩餘的容量,階段是每一個物品,決策是是否選擇當前的物品。
所以用動態規劃來解決是非常貼切的。
我們設f[V]表示已經使用容量為V時所能獲得的最大價值,w[i]表示i物品的質量,c[i]表示i物品的價值。
for(inti=1;i<=n;i++)
for(intj=V;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+c[i]);
這便是所謂的一個狀態轉移方程。
f[j]表示在已經使用容量為j時的最大價值,f[j-w[i]]表示在已經使用容量為j-w[i]時的最大價值。
f[j]可以由f[j-w[i]]這個狀態轉移到達,表示選取w[i]這個物品,並從而獲得價值為c[i]。
而每次f[j]會在選與不選中決策選出最優的方案。
從每一個物品,也就是每一個階段的局部最優推出最後的全局最優值。這樣就解決了01背包問題
Ⅸ 計算機演算法分析考試:動態規劃0-1背包問題,怎麼算
問題描述:
給定n種物品和一背包,物品i的重量是wi,其價值為vi,背包的容量為C。問應如何選擇裝入背包的物品(物品不能分割),使得裝入背包中物品的總價值最大?
抽象描述如下:
x[n]:表示物品的選擇,x[i]=1表示選擇放進物品i到背包中。
Ⅹ 求動態規劃0-1背包演算法解釋
01背包問題
題目
有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。
基本思路
這是最基礎的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。
用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態轉移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
這個方程非常重要,基本上所有跟背包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的背包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物 品放入容量為v的背包中」,價值為f[i-1][v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的背包中」,此時能獲得的最大價值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。
優化空間復雜度
以上方法的時間和空間復雜度均為O(VN),其中時間復雜度應該已經不能再優化了,但空間復雜度卻可以優化到O。
先考慮上面講的基本思路如何實現,肯定是有一個主循環i=1..N,每次算出來二維數組f[i][0..V]的所有值。那麼,如果只用一個數組 f[0..V],能不能保證第i次循環結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主循環中推f[v]時)能夠得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事實上,這要求在每次主循環中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]保存的是狀態 f[i-1][v-c[i]]的值。偽代碼如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當於我們的轉移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的循環順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的背包問題P02最簡捷的解決方案,故學習只用一維數組解01背包問題是十分必要的。
事實上,使用一維數組解01背包的程序在後面會被多次用到,所以這里抽象出一個處理一件01背包中的物品過程,以後的代碼中直接調用不加說明。
過程ZeroOnePack,表示處理一件01背包中的物品,兩個參數cost、weight分別表明這件物品的費用和價值。
procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意這個過程里的處理與前面給出的偽代碼有所不同。前面的示常式序寫成v=V..0是為了在程序中體現每個狀態都按照方程求解了,避免不必要的思維復雜度。而這里既然已經抽象成看作黑箱的過程了,就可以加入優化。費用為cost的物品不會影響狀態f[0..cost-1],這是顯然的。
有了這個過程以後,01背包問題的偽代碼就可以這樣寫:
for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的細節問題
我們看到的求最優解的背包問題題目中,事實上有兩種不太相同的問法。有的題目要求「恰好裝滿背包」時的最優解,有的題目則並沒有要求必須把背包裝滿。一種區別這兩種問法的實現方法是在初始化的時候有所不同。
如果是第一種問法,要求恰好裝滿背包,那麼在初始化時除了f[0]為0其它f[1..V]均設為-∞,這樣就可以保證最終得到的f[N]是一種恰好裝滿背包的最優解。
如果並沒有要求必須把背包裝滿,而是只希望價格盡量大,初始化時應該將f[0..V]全部設為0。
為什麼呢?可以這樣理解:初始化的f數組事實上就是在沒有任何物品可以放入背包時的合法狀態。如果要求背包恰好裝滿,那麼此時只有容量為0的背包可能被價值為0的nothing「恰好裝滿」,其它容量的背包均沒有合法的解,屬於未定義的狀態,它們的值就都應該是-∞了。如果背包並非必須被裝滿,那麼 任何容量的背包都有一個合法解「什麼都不裝」,這個解的價值為0,所以初始時狀態的值也就全部為0了。
這個小技巧完全可以推廣到其它類型的背包問題,後面也就不再對進行狀態轉移之前的初始化進行講解。
一個常數優化
前面的偽代碼中有 for v=V..1,可以將這個循環的下限進行改進。
由於只需要最後f[v]的值,倒推前一個物品,其實只要知道f[v-w[n]]即可。以此類推,對以第j個背包,其實只需要知道到f[v-sum{w[j..n]}]即可,即代碼中的
for i=1..N
for v=V..0
可以改成
for i=1..n
bound=max{V-sum{w[i..n]},c[i]}
for v=V..bound
這對於V比較大時是有用的。
小結
01背包問題是最基本的背包問題,它包含了背包問題中設計狀態、方程的最基本思想,另外,別的類型的背包問題往往也可以轉換成01背包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間復雜度。