導航:首頁 > 源碼編譯 > O2編譯函數結尾

O2編譯函數結尾

發布時間:2023-01-22 17:50:11

❶ C++ int i[233];我直接這樣寫代表了什麼意思

C++ int i[233];直接這樣寫代表了,定義了一個整形的數組,共有233個整形元素,數組的名字叫做i。

linux 編譯選項

  1. gcc -E source_file.c
    -E,只執行到預編譯。直接輸出預編譯結果。

  2. gcc -S source_file.c
    -S,只執行到源代碼到匯編代碼的轉換,輸出匯編代碼。

  3. gcc -c source_file.c
    -c,只執行到編譯,輸出目標文件。

  4. gcc (-E/S/c/) source_file.c -o output_filename
    -o, 指定輸出文件名,可以配合以上三種標簽使用。
    -o 參數可以被省略。這種情況下編譯器將使用以下默認名稱輸出:
    -E:預編譯結果將被輸出到標准輸出埠(通常是顯示器)
    -S:生成名為source_file.s的匯編代碼
    -c:生成名為source_file.o的目標文件。
    無標簽情況:生成名為a.out的可執行文件。

  5. gcc -g source_file.c
    -g,生成供調試用的可執行文件,可以在gdb中運行。由於文件中包含了調試信息因此運行效率很低,且文件也大不少。
    這里可以用strip命令重新將文件中debug信息刪除。這是會發現生成的文件甚至比正常編譯的輸出更小了,這是因為strip把原先正常編譯中的一些額外信息(如函數名之類)也刪除了。用法為 strip a.out

  6. gcc -s source_file.c
    -s, 直接生成與運用strip同樣效果的可執行文件(刪除了所有符號信息)。

  7. gcc -O source_file.c
    -O(大寫的字母O),編譯器對代碼進行自動優化編譯,輸出效率更高的可執行文件。
    -O 後面還可以跟上數字指定優化級別,如:
    gcc -O2 source_file.c
    數字越大,越加優化。但是通常情況下,自動的東西都不是太聰明,太大的優化級別可能會使生成的文件產生一系列的bug。一般可選擇2;3會有一定風險。

  8. gcc -Wall source_file.c
    -W,在編譯中開啟一些額外的警告(warning)信息。-Wall,將所有的警告信息全開。

  9. gcc source_file.c -L/path/to/lib -lxxx -I/path/to/include
    -l, 指定所使用到的函數庫,本例中鏈接器會嘗試鏈接名為libxxx.a的函數庫。
    -L,指定函數庫所在的文件夾,本例中鏈接器會嘗試搜索/path/to/lib文件夾。
    -I, 指定頭文件所在的文件夾,本例中預編譯器會嘗試搜索/path/to/include文件夾。

❸ gcc-O2編譯求sizeof(struct_type)分別占幾位元組

1個位元組。
這就是實例化的原因(空類同樣可以被實例化),每個實例在內存中都有一個獨一無二的地址,為了達到這個目的,編譯器往往會給一個空類或空結構體(C++中結構體也可看為類)隱含的加一個位元組。這樣空類或空結構體在實例化後在內存得到了獨一無二的地址,所以空類所佔的內存大小是1個位元組。

❹ c語言在哪裡運行,怎麼保存,後綴名是什麼。

C 是一種在 UNIX 操作系統的早期就被廣泛使用的通用編程語言. 它最早是由貝爾實驗室的 Dennis Ritchie 為了 UNIX 的輔助開發而寫的, 開始時 UNIX 是用匯編語言和一種叫 B 的語言編寫的. 從那時候起, C 就成為世界上使用最廣泛計算機語言.

C 能在編程領域里得到如此廣泛支持的原因有以下一些:
它是一種非常通用的語言. 幾乎你所能想到的任何一種計算機上都有至少一種能用的 C 編譯器. 並且它的語法和函數庫在不同的平台上都是統一的, 這個特性對開發者來說很有吸引力.
用 C 寫的程序執行速度很快.
C 是所有版本的UNIX上的系統語言.
C 在過去的二十年中有了很大的發展. 在80年代末期美國國家標准協會(American National Standards Institute)發布了一個被稱為 ANSI C 的 C 語言標准.這更加保證了將來在不同平台上的 C 的一致性. 在80年代還出現了一種 C 的面向對象的擴展稱為 C++. C++ 將在另一篇文章 "C++ 編程"中描述.
Linux 上可用的 C 編譯器是 GNU C 編譯器, 它建立在自由軟體基金會的編程許可證的基礎上, 因此可以自由發布. 你能在 Linux 的發行光碟上找到它.

GNU C 編譯器
隨 Slackware Linux 發行的 GNU C 編譯器(GCC)是一個全功能的 ANSI C 兼容編譯器. 如果你熟悉其他操作系統或硬體平台上的一種 C 編譯器, 你將能很快地掌握 GCC. 本節將介紹如何使用 GCC 和一些 GCC 編譯器最常用的選項.

使用 GCC
通常後跟一些選項和文件名來使用 GCC 編譯器. gcc 命令的基本用法如下:
gcc [options] [filenames]
命令行選項指定的操作將在命令行上每個給出的文件上執行. 下一小節將敘述一些你會最常用到的選項.

GCC 選項
GCC 有超過100個的編譯選項可用. 這些選項中的許多你可能永遠都不會用到, 但一些主要的選項將會頻繁用到. 很多的 GCC 選項包括一個以上的字元. 因此你必須為每個選項指定各自的連字元, 並且就象大多數 Linux 命令一樣你不能在一個單獨的連字元後跟一組選項. 例如, 下面的兩個命令是不同的:
gcc -p -g test.c

gcc -pg test.c
第一條命令告訴 GCC 編譯 test.c 時為 prof 命令建立剖析(profile)信息並且把調試信息加入到可執行的文件里. 第二條命令只告訴 GCC 為 gprof 命令建立剖析信息.

當你不用任何選項編譯一個程序時, GCC 將會建立(假定編譯成功)一個名為 a.out 的可執行文件. 例如, 下面的命令將在當前目錄下產生一個叫 a.out 的文件:
gcc test.c
你能用 -o 編譯選項來為將產生的可執行文件指定一個文件名來代替 a.out. 例如, 將一個叫 count.c 的 C 程序編譯為名叫 count 的可執行文件, 你將輸入下面的命令:
gcc -o count count.c

--------------------------------------------------------------------------------
注意: 當你使用 -o 選項時, -o 後面必須跟一個文件名.
--------------------------------------------------------------------------------

GCC 同樣有指定編譯器處理多少的編譯選項. -c 選項告訴 GCC 僅把源代碼編譯為目標代碼而跳過匯編和連接的步驟. 這個選項使用的非常頻繁因為它使得編譯多個 C 程序時速度更快並且更易於管理. 預設時 GCC 建立的目標代碼文件有一個 .o 的擴展名.
-S 編譯選項告訴 GCC 在為 C 代碼產生了匯編語言文件後停止編譯. GCC 產生的匯編語言文件的預設擴展名是 .s . -E 選項指示編譯器僅對輸入文件進行預處理. 當這個選項被使用時, 預處理器的輸出被送到標准輸出而不是儲存在文件里.

優 化 選 項
當你用 GCC 編譯 C 代碼時, 它會試著用最少的時間完成編譯並且使編譯後的代碼易於調試. 易於調試意味著編譯後的代碼與源代碼有同樣的執行次序, 編譯後的代碼沒有經過優化. 有很多選項可用於告訴 GCC 在耗費更多編譯時間和犧牲易調試性的基礎上產生更小更快的可執行文件. 這些選項中最典型的是-O 和 -O2 選項.
-O 選項告訴 GCC 對源代碼進行基本優化. 這些優化在大多數情況下都會使程序執行的更快. -O2 選項告訴 GCC 產生盡可能小和盡可能快的代碼. -O2 選項將使編譯的速度比使用 -O 時慢. 但通常產生的代碼執行速度會更快.

除了 -O 和 -O2 優化選項外, 還有一些低級選項用於產生更快的代碼. 這些選項非常的特殊, 而且最好只有當你完全理解這些選項將會對編譯後的代碼產生什麼樣的效果時再去使用. 這些選項的詳細描述, 請參考 GCC 的指南頁, 在命令行上鍵入 man gcc .

調試和剖析選項
GCC 支持數種調試和剖析選項. 在這些選項里你會最常用到的是 -g 和 -pg 選項.
-g 選項告訴 GCC 產生能被 GNU 調試器使用的調試信息以便調試你的程序. GCC 提供了一個很多其他 C 編譯器里沒有的特性, 在 GCC 里你能使 -g 和 -O (產生優化代碼)聯用. 這一點非常有用因為你能在與最終產品盡可能相近的情況下調試你的代碼. 在你同時使用這兩個選項時你必須清楚你所寫的某些代碼已經在優化時被 GCC 作了改動. 關於調試 C 程序的更多信息請看下一節"用 gdb 調試 C 程序" .
-pg 選項告訴 GCC 在你的程序里加入額外的代碼, 執行時, 產生 gprof 用的剖析信息以顯示你的程序的耗時情況. 關於 gprof 的更多信息請參考 "gprof" 一節.

用 gdb 調試 GCC 程序
Linux 包含了一個叫 gdb 的 GNU 調試程序. gdb 是一個用來調試 C 和 C++ 程序的強力調試器. 它使你能在程序運行時觀察程序的內部結構和內存的使用情況. 以下是 gdb 所提供的一些功能:
它使你能監視你程序中變數的值.
它使你能設置斷點以使程序在指定的代碼行上停止執行.
它使你能一行行的執行你的代碼.

在命令行上鍵入 gdb 並按回車鍵就可以運行 gdb 了, 如果一切正常的話, gdb 將被啟動並且你將在屏幕上看到類似的內容:
GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show ing" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.14 (i486-slakware-linux), Copyright 1995 Free Software Foundation, Inc.

(gdb)
當你啟動 gdb 後, 你能在命令行上指定很多的選項. 你也可以以下面的方式來運行 gdb :
gdb <fname>
當你用這種方式運行 gdb , 你能直接指定想要調試的程序. 這將告訴gdb 裝入名為 fname 的可執行文件. 你也可以用 gdb 去檢查一個因程序異常終止而產生的 core 文件, 或者與一個正在運行的程序相連. 你可以參考 gdb 指南頁或在命令行上鍵入 gdb -h 得到一個有關這些選項的說明的簡單列表.

為調試編譯代碼(Compiling Code for Debugging)
為了使 gdb 正常工作, 你必須使你的程序在編譯時包含調試信息. 調試信息包含你程序里的每個變數的類型和在可執行文件里的地址映射以及源代碼的行號. gdb 利用這些信息使源代碼和機器碼相關聯.
在編譯時用 -g 選項打開調試選項.

gdb 基本命令
gdb 支持很多的命令使你能實現不同的功能. 這些命令從簡單的文件裝入到允許你檢查所調用的堆棧內容的復雜命令, 表27.1列出了你在用 gdb 調試時會用到的一些命令. 想了解 gdb 的詳細使用請參考 gdb 的指南頁.

表 27.1. 基本 gdb 命令.

命 令 描 述
file 裝入想要調試的可執行文件.
kill 終止正在調試的程序.
list 列出產生執行文件的源代碼的一部分.
next 執行一行源代碼但不進入函數內部.
step 執行一行源代碼而且進入函數內部.
run 執行當前被調試的程序
quit 終止 gdb
watch 使你能監視一個變數的值而不管它何時被改變.
break 在代碼里設置斷點, 這將使程序執行到這里時被掛起.
make 使你能不退出 gdb 就可以重新產生可執行文件.
shell 使你能不離開 gdb 就執行 UNIX shell 命令.

gdb 支持很多與 UNIX shell 程序一樣的命令編輯特徵. 你能象在 bash 或 tcsh里那樣按 Tab 鍵讓 gdb 幫你補齊一個唯一的命令, 如果不唯一的話 gdb 會列出所有匹配的命令. 你也能用游標鍵上下翻動歷史命令.

gdb 應用舉例
本節用一個實例教你一步步的用 gdb 調試程序. 被調試的程序相當的簡單, 但它展示了 gdb 的典型應用.

下面列出了將被調試的程序. 這個程序被稱為 greeting , 它顯示一個簡單的問候, 再用反序將它列出.
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

void my_print (char *string)

{

printf ("The string is %s\n", string);

}

void my_print2 (char *string)

{

char *string2;

int size, i;

size = strlen (string);

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size - i] = string[i];

string2[size+1] = `\0';

printf ("The string printed backward is %s\n", string2);

}
用下面的命令編譯它:

gcc -o test test.c
這個程序執行時顯示如下結果:
The string is hello there

The string printed backward is
輸出的第一行是正確的, 但第二行列印出的東西並不是我們所期望的. 我們所設想的輸出應該是:
The string printed backward is ereht olleh
由於某些原因, my_print2 函數沒有正常工作. 讓我們用 gdb 看看問題究竟出在哪兒, 先鍵入如下命令:

gdb greeting

--------------------------------------------------------------------------------
注意: 記得在編譯 greeting 程序時把調試選項打開.
--------------------------------------------------------------------------------

如果你在輸入命令時忘了把要調試的程序作為參數傳給 gdb , 你可以在 gdb 提示符下用 file 命令來載入它:

(gdb) file greeting
這個命令將載入 greeting 可執行文件就象你在 gdb 命令行里裝入它一樣.
這時你能用 gdb 的 run 命令來運行 greeting 了. 當它在 gdb 里被運行後結果大約會象這樣:

(gdb) run

Starting program: /root/greeting

The string is hello there

The string printed backward is

Program exited with code 041
這個輸出和在 gdb 外面運行的結果一樣. 問題是, 為什麼反序列印沒有工作? 為了找出症結所在, 我們可以在 my_print2 函數的 for 語句後設一個斷點, 具體的做法是在 gdb 提示符下鍵入 list 命令三次, 列出源代碼:
(gdb) list

(gdb) list

(gdb) list

--------------------------------------------------------------------------------
技巧: 在 gdb 提示符下按回車健將重復上一個命令.
--------------------------------------------------------------------------------

第一次鍵入 list 命令的輸出如下:

1 #include <stdio.h>

2

3 main ()

4 {

5 char my_string[] = "hello there";

6

7 my_print (my_string);

8 my_print2 (my_string);

9 }

10
如果按下回車, gdb 將再執行一次 list 命令, 給出下列輸出:

11 my_print (char *string)

12 {

13 printf ("The string is %s\n", string);

14 }

15

16 my_print2 (char *string)

17 {

18 char *string2;

19 int size, i;

20
再按一次回車將列出 greeting 程序的剩餘部分:
21 size = strlen (string);

22 string2 = (char *) malloc (size + 1);

23 for (i = 0; i < size; i++)

24 string2[size - i] = string[i];

25 string2[size+1] = `\0';

26 printf ("The string printed backward is %s\n", string2);

27 }
根據列出的源程序, 你能看到要設斷點的地方在第24行, 在 gdb 命令行提示符下鍵入如下命令設置斷點:
(gdb) break 24
gdb 將作出如下的響應:
Breakpoint 1 at 0x139: file greeting.c, line 24

(gdb)

現在再鍵入 run 命令, 將產生如下的輸出:

Starting program: /root/greeting

The string is hello there

Breakpoint 1, my_print2 (string = 0xbfffdc4 "hello there") at greeting.c :24

24 string2[size-i]=string[i]
你能通過設置一個觀察 string2[size - i] 變數的值的觀察點來看出錯誤是怎樣產生的, 做法是鍵入:

(gdb) watch string2[size - i]
gdb 將作出如下回應:
Watchpoint 2: string2[size - i]
現在可以用 next 命令來一步步的執行 for 循環了:

(gdb) next
經過第一次循環後, gdb 告訴我們 string2[size - i] 的值是 `h`. gdb 用如下的顯示來告訴你這個信息:

Watchpoint 2, string2[size - i]

Old value = 0 `\000'

New value = 104 `h'

my_print2(string = 0xbfffdc4 "hello there") at greeting.c:23

23 for (i=0; i<size; i++)
這個值正是期望的. 後來的數次循環的結果都是正確的. 當 i=10 時, 表達式 string2[size - i] 的值等於 `e`, size - i 的值等於 1, 最後一個字元已經拷到新串里了.
如果你再把循環執行下去, 你會看到已經沒有值分配給 string2[0] 了, 而它是新串的第一個字元, 因為 malloc 函數在分配內存時把它們初始化為空(null)字元. 所以 string2 的第一個字元是空字元. 這解釋了為什麼在列印 string2 時沒有任何輸出了.

現在找出了問題出在哪裡, 修正這個錯誤是很容易的. 你得把代碼里寫入 string2 的第一個字元的的偏移量改為 size - 1 而不是 size. 這是因為 string2 的大小為 12, 但起始偏移量是 0, 串內的字元從偏移量 0 到 偏移量 10, 偏移量 11 為空字元保留.

為了使代碼正常工作有很多種修改辦法. 一種是另設一個比串的實際大小小 1 的變數. 這是這種解決辦法的代碼:

#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
另外的 C 編程工具
Slackware Linux 的發行版中還包括一些我們尚未提到的 C 開發工具. 本節將介紹這些工具和它們的典型用法.
xxgdb
xxgdb 是 gdb 的一個基於 X Window 系統的圖形界面. xxgdb 包括了命令行版的 gdb 上的所有特性. xxgdb 使你能通過按按鈕來執行常用的命令. 設置了斷點的地方也用圖形來顯示.

你能在一個 Xterm 窗口裡鍵入下面的命令來運行它:
xxgdb
你能用 gdb 里任何有效的命令行選項來初始化 xxgdb . 此外 xxgdb 也有一些特有的命令行選項, 表 27.2 列出了這些選項.

表 27.2. xxgdb 命令行選項.

選 項 描 述
db_name 指定所用調試器的名字, 預設是 gdb.
db_prompt 指定調試器提示符, 預設為 gdb.
gdbinit 指定初始化 gdb 的命令文件的文件名, 預設為 .gdbinit.
nx 告訴 xxgdb 不執行 .gdbinit 文件.
bigicon 使用大圖標.

calls
你可以在 sunsite.unc.e FTP 站點用下面的路徑:
/pub/Linux/devel/lang/c/calls.tar.Z

來取得 calls , 一些舊版本的 Linux CD-ROM 發行版里也附帶有. 因為它是一個有用的工具, 我們在這里也介紹一下. 如果你覺得有用的話, 從 BBS, FTP, 或另一張CD-ROM 上弄一個拷貝. calls 調用 GCC 的預處理器來處理給出的源程序文件, 然後輸出這些文件的里的函數調用樹圖.

--------------------------------------------------------------------------------
注意: 在你的系統上安裝 calls , 以超級用戶身份登錄後執行下面的步驟: 1. 解壓和 untar 文件. 2. cd 進入 calls untar 後建立的子目錄. 3. 把名叫 calls 的文件移動到 /usr/bin 目錄. 4. 把名叫 calls.1 的文件移動到目錄 /usr/man/man1 . 5. 刪除 /tmp/calls 目錄. 這些步驟將把 calls 程序和它的指南頁安裝載你的系統上.
--------------------------------------------------------------------------------

當 calls 列印出調用跟蹤結果時, 它在函數後面用中括弧給出了函數所在文件的文件名:
main [test.c]
如果函數並不是向 calls 給出的文件里的, calls 不知道所調用的函數來自哪裡, 則只顯示函數的名字:
printf
calls 不對遞歸和靜態函數輸出. 遞歸函數顯示成下面的樣子:
fact <<< recursive in factorial.c >>>
靜態函數象這樣顯示:
total [static in calculate.c]
作為一個例子, 假設用 calls 處理下面的程序:

#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
將產生如下的輸出:
1 main [test.c]

2 my_print [test.c]

3 printf

4 my_print2 [test.c]

5 strlen

6 malloc

7 printf
calls 有很多命令行選項來設置不同的輸出格式, 有關這些選項的更多信息請參考 calls 的指南頁. 方法是在命令行上鍵入 calls -h .

cproto
cproto 讀入 C 源程序文件並自動為每個函數產生原型申明. 用 cproto 可以在寫程序時為你節省大量用來定義函數原型的時間.
如果你讓 cproto 處理下面的代碼:
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
你將得到下面的輸出:
/* test.c */

int main(void);

int my_print(char *string);

int my_print2(char *string);
這個輸出可以重定向到一個定義函數原型的包含文件里.
indent
indent 實用程序是 Linux 里包含的另一個編程實用工具. 這個工具簡單的說就為你的代碼產生美觀的縮進的格式. indent 也有很多選項來指定如何格式化你的源代碼.這些選項的更多信息請看indent 的指南頁, 在命令行上鍵入 indent -h .

下面的例子是 indent 的預設輸出:

運行 indent 以前的 C 代碼:

#include <stdio.h>

main () {

char my_string[] = "hello there";

my_print (my_string);

my_print2(my_string); }

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string) {

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
運行 indent 後的 C 代碼:
#include <stdio.h>

main ()

{

char my_string[] = "hello there";

my_print (my_string);

my_print2 (my_string);

}

my_print (char *string)

{

printf ("The string is %s\n", *string);

}

my_print2 (char *string)

{

char *string2;

int size, size2, i;

size = strlen (string);

size2 = size -1;

string2 = (char *) malloc (size + 1);

for (i = 0; i < size; i++)

string2[size2 - i] = string[i];

string2[size] = `\0';

printf ("The string printed backward is %s\n", string2);

}
indent 並不改變代碼的實質內容, 而只是改變代碼的外觀. 使它變得更可讀, 這永遠是一件好事.
gprof
gprof 是安裝在你的 Linux 系統的 /usr/bin 目錄下的一個程序. 它使你能剖析你的程序從而知道程序的哪一個部分在執行時最費時間.
gprof 將告訴你程序里每個函數被調用的次數和每個函數執行時所佔時間的百分比. 你如果想提高你的程序性能的話這些信息非常有用.

為了在你的程序上使用 gprof, 你必須在編譯程序時加上 -pg 選項. 這將使程序在每次執行時產生一個叫 gmon.out 的文件. gprof 用這個文件產生剖析信息.

在你運行了你的程序並產生了 gmon.out 文件後你能用下面的命令獲得剖析信息:

gprof <program_name>
參數 program_name 是產生 gmon.out 文件的程序的名字.

--------------------------------------------------------------------------------
技巧: gprof 產生的剖析數據很大, 如果你想檢查這些數據的話最好把輸出重定向到一個文件里.
--------------------------------------------------------------------------------

f2c 和 p2c
f2c 和 p2c 是兩個源代碼轉換程序. f2c 把 FORTRAN 代碼轉換為 C 代碼, p2c 把 Pascal 代碼轉換為 C 代碼. 當你安裝 GCC 時這兩個程序都會被安裝上去.
如果你有一些用 FORTRAN 或 Pascal 寫的代碼要用 C 重寫的話, f2c 和 p2c 對你非常有用. 這兩個程序產生的 C 代碼一般不用修改就直接能被 GCC 編譯.

如果要轉換的 FORTRAN 或 Pascal 程序比較小的話可以直接使用 f2c 或 p2c 不用加任何選項. 如果要轉換的程序比較龐大, 包含很多文件的話你可能要用到一些命令行選項.

在一個 FORTRAN 程序上使用 f2c , 輸入下面的命令:

f2c my_fortranprog.f

--------------------------------------------------------------------------------
注意: f2c 要求被轉換的程序的擴展名為 .f 或 a .F .
--------------------------------------------------------------------------------

要把一個Pascal 程序裝換為 C 程序, 輸入下面的命令:
p2c my_pascalprogram.pas
這兩個程序產生的 C 源代碼的文件名都和原來的文件名相同, 但擴展名由 .f 或 .pas 變為 .c.

❺ linux下如何查看一個二進制文件是使用-O0優化還是-O2優化

gcc默認提供了5級優化選項:
-O/-O0:無優化(默認)
-O1:使用能減少目標文件大小以及執行時間並且不會使編譯時間明顯增加的優化。該模式在編譯大型程序的時候會花費更多的時間和內存。在-O1下:編譯會嘗試減少代碼體積和代碼運行時間,但是並不執行會花費大量時間的優化操作。
-O2: 包含-O1的優化並增加了不需要在目標文件大小和執行速度上進行折衷的優化。GCC執行幾乎所有支持的操作但不包括空間和速度之間權衡的優化,編譯器不執行循環展開以及函數內聯。這是推薦的優化等級,除非你有特殊的需求。-O2會比-O1啟用多一些標記。與-O1比較該優化-O2將會花費更多的編譯時間當然也會生成性能更好的代碼。
-Os:專門優化目標文件大小,執行所有的不增加目標文件大小的-O2優化選項。同時-Os還會執行更加優化程序空間的選項。這對於磁碟空間極其緊張或者CPU緩存較小的機器非常有用。但也可能產生些許問題,因此軟體樹中的大部分ebuild都過濾掉這個等級的優化。使用-Os是不推薦的。
-O3: 打開所有-O2的優化選項並且增加 -finline-functions, -funswitch-loops,-fpredictive-commoning, -fgcse-after-reload and -ftree-vectorize優化選項。這是最高最危險的優化等級。用這個選項會延長編譯代碼的時間,並且在使用gcc4.x的系統里不應全局啟用。自從3.x版本以來gcc的行為已經有了極大地改變。在3.x,-O3生成的代碼也只是比-O2快一點點而已,而gcc4.x中還未必更快。用-O3來編譯所有的軟體包將產生更大體積更耗內存的二進制文件,大大增加編譯失敗的機會或不可預知的程序行為(包括錯誤)。這樣做將得不償失,記住過猶不及。在gcc 4.x.中使用-O3是不推薦的。
————————————————
版權聲明:本文為CSDN博主「rongming_lu」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/LU_ZHAO/java/article/details/104516291

❻ 什麼叫 -O2編譯

【-O2編譯】編譯器提供-O選項,供程序優化使用。其中:
1、-O0表示沒有優化;
2、-O1為預設值,提供基礎級別的優化;
3、-O2 提供更加高級的代碼優化,會佔用更長的編譯時間;
4、-O3 提供最高級的代碼優化。
【編譯器】就是將「一種語言(通常為高級語言)」翻譯為「另一種語言(通常為低級語言)」的程序。一個現代編譯器的主要工作流程:源代碼 (source code) → 預處理器 (preprocessor) → 編譯器 (compiler) → 目標代碼 (object code) → 鏈接器(Linker) → 可執行程序 (executables)
高級計算機語言便於人編寫,閱讀交流,維護。機器語言是計算機能直接解讀、運行的。編譯器將匯編或高級計算機語言源程序(Source program)作為輸入,翻譯成目標語言(Target language)機器代碼的等價程序。源代碼一般為高級語言 (High-level language), 如Pascal、C、C++、Java、漢語編程等或匯編語言,而目標則是機器語言的目標代碼(Object code),有時也稱作機器代碼(Machine code)。

❼ O2優化掃盲

O2優化實際上是Optimize,2是優化等級。除了O2優化還有O3優化,這是更高等級的優化;還有Ofast、Os等等多種優化等級,對於有些演算法題,使用暴力演算法+O2優化是可以正常AC的;但是注意並不是所有O2優化都是正優化,有的會是負優化

[gcc官方關於O2優化的說明] ( https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html )

但是實際應用中STL編譯的時候,我們會開 優化,開完之後其實速度跟數組模擬的隊列差不多快
在演算法競賽中,比賽方一般不會開O2優化,這種情況下STL的棧隊列要比數組模擬的棧隊列慢一倍左右
O2優化的知識點還是非常重要的!!!

❽ makefile裡面gcc-O2-o$lt;是什麼意思

-O2表示優化選項,2表示最優優化,即編譯器會優化你的程序;-o表示後邊接的是文件名稱;$@是Makefile的通配符,代指你前面指定的文件名,例如有規則%.o:%.c,那麼$@表示xxx.o文件(xxx是你的源代碼文件的名稱前綴);$<表示搜索到的第一個匹配的文件,對於規則%.o:%.c,$<表示第一個找到的.c文件。簡而言之,假設在一個文件夾下有若干.c文件,那麼下面的規則:
%.o:%.c
gcc -O2 -o $@ $< #表示Tab鍵
表示把所有的.c文件編譯成中間.o文件。

❾ makefile裡面 gcc -O2 -o $@ $< 是什麼意思

-O2表示優化選項,2表示最優優化,即編譯器會優化你的程序;-o表示後邊接的是文件名稱;$@是Makefile的通配符,代指前面指定的文件名。

一些常見的自動化變數說明如下:

(1) $@ ——目標文件的名稱;

(2) $^ ——所有的依賴文件,以空格分開,不包含重復的依賴文件;

(3) $< ——第一個依賴文件的名稱。

示例:

main:main.c sort.o

gcc main.c sort.o -o main

表示為簡潔的就是:

main:main.c sort.o

gcc $^ -o $@

(9)O2編譯函數結尾擴展閱讀:

在Makefile文件中描述了整個工程所有文件的編譯順序、編譯規則。Makefile 有自己的書寫格式、關鍵字、函數。像C 語言有自己的格式、關鍵字和函數一樣。而且在Makefile 中可以使用系統shell所提供的任何命令來完成想要的工作。Makefile在絕大多數的IDE 開發環境中都在使用,已經成為一種工程的編譯方法。

❿ Excel函數公式問題

  1. 公式為:

    =OFFSET(A2,,MATCH(O2,$1:$1,))

  2. 如圖所示:

閱讀全文

與O2編譯函數結尾相關的資料

熱點內容
ipadminipdf閱讀 瀏覽:504
文件夾無限制壓縮會不會降低內存 瀏覽:410
榮耀怎樣創建文件夾 瀏覽:629
如何用本機登陸遠程伺服器地址 瀏覽:680
黃小鴨解壓文具盒 瀏覽:670
女程序員的轉行方法 瀏覽:881
東風啟辰車聯網安裝文件夾 瀏覽:524
華為怎麼設置app時間鎖 瀏覽:660
後宮app視頻怎麼下載 瀏覽:525
如何把圖片轉換從PDF格式 瀏覽:259
重寫和重載的區別java 瀏覽:234
expressvpnandroid 瀏覽:84
儲存卡被加密怎麼解除 瀏覽:169
地球怎麼壓縮直徑 瀏覽:780
金鏟鏟之戰伺服器爆滿怎麼進 瀏覽:160
同仁堂pdf 瀏覽:935
如何編譯原理課程教材 瀏覽:730
單片機控制顯示器 瀏覽:776
頂好花app下載怎麼找不到 瀏覽:989
手機命令大全 瀏覽:808